
1

Supplementary Information for2

Inference of complex population histories using whole-genome sequences from multiple3

populations4

Matthias Steinrücken, Jack Kamm, Jeffrey P. Spence, Yun S. Song5

Yun S. Song6

E-mail: yss@berkeley.edu7

This PDF file includes:8

Supplementary text9

Figs. S1 to S610

Table S111

References for SI reference citations12

Matthias Steinrücken, Jack Kamm, Jeffrey P. Spence, Yun S. Song 1 of 28



Supporting Information Text13

1. Hidden Markov Model formulation of the approximate CSDs14

In this section, we present some additional notation and results to describe the Hidden Markov Model (HMM) that can be15

used to approximate the conditional sampling distribution (CSD).16

1.1. Notation. We model the sampled haplotypes under the finite-sites, finite-alleles coalescent with recombination. Denote the17

set of possible alleles at a specific site or locus by E. A haplotype h of length L carries an allele at every locus and is thus18

an L-tuple from the set H = EL of possible haplotypes. Denote by h[l] the allele that haplotype h carries at locus l, and by19

h[l : l′] the vector (h[l], . . . , h[l′]). At each locus, mutations can occur at a coalescent-scaled per-locus mutation rate of θ/2,20

where θ = 4N0µ, with N0 being the reference effective population size and µ the per-locus per-generation mutation probability.21

Denote by P the stochastic mutation matrix, that is, if a mutation occurs, then allele a mutates into allele a′ with probability22

Pa,a′ , for a, a′ ∈ E. A crossover recombination event occurs between each pair of consecutive loci (l, l + 1), for 1 ≤ l < L, at23

coalescent-scaled rate of ρ/2, where ρ = 4N0r and r denotes the per-generation recombination probability. The recombination24

and mutation rates could, in principle, vary along the sequence, but for notational convenience we will assume that the rates25

are constant.26

We assume that the haplotypes are sampled in any of g extant populations, and denote the set of possible populations at27

present by Γ = {1, . . . , g}. A sample configuration n can be described by a collection of non-negative integers nγ,h ≥ 0, which28

give the number of haplotypes of type h ∈ H sampled in population γ ∈ Γ. The total number of sampled haplotypes is denoted29

by n =
∑

γ∈Γ

∑
h∈H nγ,h. Further, nγ denotes the configuration consisting of only those haplotypes sampled in population γ,30

and nγ =
∑

h∈H nγ,h denotes the number of such haplotypes.31

We allow for a general demographic model, where the demographic structure and the migration rates can differ at different32

times in the past. To this end, choose E + 1 times 0 = t0 ≤ t1 ≤ · · · ≤ tE =∞ to obtain a partition of the positive real line33

[0,∞) into E epochs denoted by Iε = [tε−1, tε). Here t0 = 0 corresponds to the present and tE = ∞ to an infinite time in34

the past. Denote the set of all epochs by E := {1, . . . , E}. Note that this notation allows for an epoch to have length zero.35

To allow for changes in the ancient demographic structure, define for each epoch ε ∈ E a partition Γε = {γ(1)
ε , . . . , γ

(gε)
ε } of Γ,36

where all present populations whose indices are in the set γ(i)
ε derive from the ith ancestral population in epoch ε. Thus, there37

are gε = |Γε| populations during that epoch. We require that γ(i)
1 = {i}, ∀i in the first epoch, Γ1 = {γ(1)

1 , . . . , γ
(g)
1 }, and that38

for all ε ∈ E\{E} the partition Γε is a refinement of Γε+1.39

The size of population γ ∈ Γε is given by κ(ε)
γ N0, and the coalescent rate is inversely proportional to the population size.40

Furthermore, during an epoch ε of positive length, migration (backwards in time) from population γ ∈ Γε into population41

δ ∈ Γε occurs at a coalescent-scaled rate of m(ε)
γ,δ/2. Here m

(ε)
γ,δ = 4N0v

(ε)
γ,δ and v(ε)

γ,δ is the per-generation probability that an42

individual in population γ has a parent from population δ, also known as the backward migration rate. To handle scenarios of43

population admixture we introduce a mechanism for instantaneous migration during an epoch ε of length zero, where tε−1 = tε44

and Iε = ∅ hold. Instantaneous migration from population γ to δ during such an epoch occurs with probability y(ε)
γ,δ, the45

probability that an individual residing in population γ ∈ Γε at time tε−1 has an ancestor residing in population δ ∈ Γε at time46

tε. We denote all the parameters necessary to describe a demographic history by Θ, and present an example in Figure S5.47

1.2. Demography-aware CSD using Trunk Approximation. Recall that the CSD πΘ(h|α,n) denotes the probability of observing48

the haplotype h in sub-population α, given that the haplotypes n have already been observed and the underlying demography49

is described by the parameters Θ. Computing the true CSD πΘ(h|α,n) requires integrating over all possible genealogies50

relating the haplotypes in the already observed configuration n and the possible ways of attaching the lineage of the additional51

haplotype h to these genealogies. To approximate this high-dimensional integral, assume that the unknown genealogy of the52

configuration n is given by an unchanging “trunk” of ancestral lineages for each haplotype extending infinitely into the past.53

If populations are merged at some point in the past, then the trunk-lineage continues in the merged population. Paul and54

Song (1) and Steinrücken et al. (2) motivated this approximation using an approach based on the generator of the underlying55

diffusion process (3, 4), and provided an extensive analysis of its accuracy. The trunk-approximation for a given configuration56

n is depicted in Figure S6A.57

The following generative process describes the distribution of the ancestral lineage and the allelic composition of the58

additional haplotype H under the trunk approximation πTΘ(·|α,n). First, a sequence of marginal additional ancestral lineages59

is sampled that include, at each locus, a history of migration events performed by ancestors of H along the ancestral lineage at60

this locus, the lineage of the trunk into which the ancestor coalesces, and the times of these events. Under assumptions similar61

to the Sequentially Markov Coalescent (5, 6), these marginal lineages can be generated sequentially starting from the first62

(left-most) locus in a Markovian fashion. At the first locus, an additional ancestral lineage starts at the present in population α63

and extends into the past. During an epoch ε of positive length, if the lineage resides in population γ ∈ Γε, then it is subject to64

the events:65

• Migration: The lineage migrates to population δ ∈ Γε with rate m(ε)
γ,δ.66

• Absorption: The lineage is absorbed into a uniformly chosen trunk-lineage in the population it currently resides in at rate67 (
κ

(ε)
γ

)−1, the inverse of its size.68
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During an epoch ε of length zero, the only possible event is69

• Pulse-migration: The additional lineage migrates to population δ ∈ Γε with probability y(ε)
γ,δ.70

If at the end of an epoch ε the additional lineage resides in a population that merges with other populations into a single71

ancestral population in epoch ε+ 1, then it continues in the ancestral population after time tε. This Markov process specifies72

the initial distribution at the first locus and also describes the marginal distribution of an additional lineage. The migration73

rate is two-fold higher then in the standard coalescent to balance out the non-migrating trunk.74

Under the full coalescent with recombination, the ancestral lineages of two loci that are separated by a recombination75

distance ρ evolve together into the past for an exponentially distributed amount of time with parameter ρ/2 until they are76

decoupled by a recombination event, and evolve independently beyond this event. Thus, under the approximate CSD πTΘ(·|α,n),77

given the marginal additional genealogy at a certain locus l − 1, the marginal additional genealogy at locus l is sampled as78

follows. Denote the time of absorption at locus l−1 by tl−1. To determine whether and at what time an ancestral recombination79

event separates locus l − 1 and locus l, a time tb is sampled from an exponential distribution with parameter ρ. If tb > tl−1,80

then the two loci are not separated by an ancestral recombination event. In this case, the complete marginal additional81

genealogy at locus l − 1 is copied to the next locus, including the history of migration events, thus tl−1 = tl. If tb ≤ tl−1, then82

a recombination event separates the two loci. In this case, the marginal additional lineage at locus l− 1 from the present up to83

the time of the breakpoint tb is copied to locus l, including the population it resides in at that time. The marginal additional84

lineage at locus l beyond the time of the breakpoint then evolves independently according to the marginal dynamics, that is, it85

is independently subject to the migration dynamics until it is ultimately absorbed into a lineage of the trunk. Note that the86

recombination rate is two-fold higher than in the standard coalescent to again compensate for the lack of events in the trunk.87

Once a sequence of marginal additional genealogies is generated, the alleles of the additional haplotype are sampled as88

follows. At each locus, the allele carried by the haplotype corresponding to the absorbing lineage at the respective locus is89

propagated along the marginal additional lineage of length tl from the time of absorption to the present. Mutation events90

occur at rate θ and change the current allele according to the stochastic mutation matrix P . Note that the rate of evolution is91

again multiplied by two. This generative process describes the distribution of the additional haplotype under πTΘ(·|α,n). A92

realization can be seen in Figure S6A.93

1.3. Markov chain governing the marginal dynamics. We now introduce the mathematical notation to formalize the backward94

in time Markov chain that governs the marginal migration and absorption dynamics in our CSD. Furthermore, we provide95

details on how to compute the requisite transition probabilities for this Markov chain.96

1.3.1. Migration matrices. The migration rates for a given epoch ε can be subsumed in the migration matrix97

Mε :=


−m(ε)

1 m
(ε)
1,2 · · · m

(ε)
1,gε

m
(ε)
2,1 −m(ε)

2 · · · m
(ε)
2,gε

...
...

. . .
...

m
(ε)
gε,1 · · · · · · −m(ε)

gε

 , [1]98

where we denoted the elements in Γε by 1, . . . , gε, and m(ε)
γ =

∑
δ 6=γm

(ε)
γ,δ for each γ ∈ Γε.99

Along similar lines, for epochs of length zero with tε−1 = tε, the matrix100

Yε :=


y

(ε)
1,1 y

(ε)
1,2 · · · y

(ε)
1,gε

y
(ε)
2,1 y

(ε)
2,2 · · · y

(ε)
2,gε

...
...

. . .
...

y
(ε)
gε,1 · · · · · · y

(ε)
gε,gε

 [2]101

comprises the instantaneous migration probabilities.102

1.3.2. Extended migration matrix. As described in Section 1.2, during an epoch ε of positive length, in addition to the migration103

dynamics described by the migration matrix defined in (1), the marginal additional lineage can be absorbed into a lineage of104

the trunk in the sub-population it currently resides in.105

To model this behavior, the Markov chain describing the dynamics has two states per sub-population. One state for the106

case when the lineage only resides in the respective sub-population, and one state for the case when the lineage is actually107

absorbed. The dynamics between the unabsorbed states is governed by the migration rates given in the migration matrix108

Mε. An absorbed state can only be reached from the unabsorbed state associated with the same sub-population, since the109

additional lineage can only be absorbed into a trunk-lineage in the sub-population it currently resides in. While the lineage110

resides in sub-population γ ∈ Γε, it gets absorbed with rate (κ(ε)
γ )−1nγ , proportional to the inverse population size (κ(ε)

γ )−1
111

and nγ , the number of trunk lineages in the sub-population. The latter is given as nγ =
∑

δ∈γ nδ, the sum over the number of112

haplotypes in all present sub-populations that γ is ancestral to. Furthermore, since the Markov chain cannot exit an absorbed113

state, the rates for leaving absorbed states are zero.114
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Thus, the Markov chain describing the migration and absorption dynamics for epoch ε backwards in time evolves according115

to the 2gε × 2gε rate matrix116

Zε :=
(
Mε −Aε Aε

0 0,

)
[3]117

where the matrix118

Aε = diag
(

(κ(ε)
γ

(1)
ε

)−1nγ1 , . . . , (κ
(ε)
γ

(g)
ε

)−1nγg

)
, [4]119

for γ(i)
ε ∈ Γε and g = |Γε|, governs the absorption of the additional lineage into the trunk. Further, let a

γ
(i)
ε

denote the index in120

this matrix of the state “being absorbed in γ(i)
ε .”121

1.3.3. Spectral representation (Eigendecomposition). For an epoch ε of positive length, the spectral representation of Zε is helpful to122

compute certain integrals and matrix exponentials necessary for calculating the requisite probabilities of the HMM underlying123

the CSD πDΘ . Assume that the 2gε × 2gε matrix Zε is diagonalizable, and denote by {λ(ε)
1 , . . . λ

(ε)
2gε} the eigenvalues and by124

{v(ε)
1 , . . . , v

(ε)
2gε} the corresponding eigenvectors. Note that gε eigenvalues are zero due to the gε absorbing states.125

Now define126

Vε :=
(
v

(ε)
1 · · · v

(ε)
2gε

)
[5]127

to be the matrix that has the eigenvectors as columns. With this definition we can write128

Zε = Vε

λ
(ε)
1 · · · 0
...

. . .
...

0 · · · λ
(ε)
2gε

V −1
ε =

2gε∑
k=1

λ
(ε)
k v

(ε)
k w

(ε)
k , [6]129

where w(ε)
k is the k-th row of V −1

ε , which in turn yields130

etZε = Vε


etλ

(ε)
1 · · · 0
...

. . .
...

0 · · · e
tλ

(ε)
2gε

V −1
ε =

2gε∑
k=1

etλ
(ε)
k v

(ε)
k w

(ε)
k . [7]131

Then132 (
etZε

)
γ,δ

=
2gε∑
k=1

etλ
(ε)
k (v(ε)

k w
(ε)
k )γ,δ [8]133

holds, and furthermore,134 (
Zεe

tZε
)
γ,δ

=
2gε∑
k=1

λ
(ε)
k etλ

(ε)
k (v(ε)

k w
(ε)
k )γ,δ. [9]135

From equations (8) and (9) it follows that136

d

dt

(
etZε

)
γ,δ

=
(
Zεe

tZε
)
γ,δ
. [10]137

Note that if Zε is not diagonalizable, a similar spectral decomposition could be employed, using generalized eigenvalues and the138

Jordan normal form. However, for ease of notation, we will only present the computations in the sequel for diagonalizable139

matrices.140

1.4. Continuous HMM. We now introduce the initial, the transition, and the emission probability for the HMM with continuous141

absorption time, to illustrate our approach and introduce some useful concepts. At locus l, denote by TAl the random absorption142

time, by Gl the random population where the absorption event takes place, and by Xl the random trunk-lineage that the143

additional lineage is absorbed into. Since lineages in the trunk do not migrate, the absorbing lineage Xl would be sufficient to144

determine the population where absorption takes place. However, we keep the population explicit for later convenience.145

1.4.1. Marginal/Initial density. The transition density in this model is reversible with respect to the initial density, thus the initial146

and marginal densities are identical. They can be obtained as follows.147

First, define148

f εµε,γε :=

{(
e(tε−tε−1)Zε

)
µε,ζε

, if Iε 6= ∅,(
Yε
)
µε,ζε

, if Iε = ∅,
[11]149

the probability that a lineage residing in sub-population µε ∈ Γε at time tε−1 resides in sub-population γε ∈ Γε at time tε. In150

an epoch of length zero (Iε = ∅), this given by the instantaneous migration probabilities, whereas in an epoch of positive length151

(Iε 6= ∅), the matrix exponential of the extended migration matrix accounts for the fact that the lineage is not absorbed during152

the interval Iε.153
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The quantity (11) can be employed to recursively define the probability p
(0,ε−1)
α,γε that the additional lineage resides in154

sub-population α ∈ Γ1 (where the additional haplotype is sampled) at the beginning of epoch 1 (time t0) and resides in155

sub-population γε ∈ Γε at tε−1, while not having been absorbed by that time. The latter can thus be calculated by dynamic156

programming using the formulas p0,0
α,γ1 = δα,γ1 , where δ is the Kronecker-delta, and157

p(0,ε−1)
α,γε =

∑
µε−1∈Γε−1

∑
ζε−1∈Γε−1
ζε−1⊂γε

p(0,ε−2)
α,µε−1f

ε−1
µε−1,ζε−1

. [12]158

The sum
∑

ζε−1∈Γε−1
ζε−1⊂γε

is necessary, since it sums over all the sub-populations that merge into the sub-population γε at time159

tε−1, and thus their probabilities have to be combined.160

Now, for an arbitrary locus l and a time tl ∈ R≥0, let e = ε(tl) denote the epoch of positive length such that tl ∈ Ie. With161

ωl ∈ Γe, and xl ∈ nωl , the marginal density is then given as162

P{TAl ∈ dtl, Gl = ωl, Xl = xl} = 1
nωl

∑
γe∈Γe

p(0,e−1)
α,γe

(
Zee

(tl−te−1)Ze
)
γe,aωl

=: 1
nωl

q(0,e)
α,aωl

(tl − te−1).
[13]163

Here
(
Zee

(tl−te−1)Ze
)
γe,aωl

is the density of the event that the additional lineage is absorbed into a trunk-lineage in sub-164

population ωl at time tl. The factor 1
nωl

appears, since it is absorbed into a specific trunk-lineage in this sub-population.165

1.4.2. Transition density. For ease of exposition, we focus on deriving the joint density first, which can then be combined with166

the marginal density to obtain the transition density. The additional lineages at two loci l− 1 and l can either be separated by167

a recombination event or not. The time of the recombination TB event is given by an exponential random variable with rate ρ.168

Thus, with tl−1, tl ∈ R≥0, ωl−1 ∈ Γε(tl−1), xl ∈ nωl−1 , ωl ∈ Γε(tl), and xl ∈ nωl , partitioning with respect to the time of the169

recombination event yields170

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ dtl, Gl = ωl, Xl = xl}

=
∫ ∞
tb=0

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ dtl, Gl = ωl, Xl = xl, T

B ∈ dtb}

=
∫ ∞
tb=tl−1∧tl

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ dtl, Gl = ωl, Xl = xl, T

B ∈ dtb}

+
∫ tl−1∧tl

tb=0
P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T

A
l ∈ dtl, Gl = ωl, Xl = xl, T

B ∈ dtb}

[14]171

for the joint distribution of the hidden states at locus l − 1 and l.172

The first term in (14) represents the case when the lineages at both loci are absorbed together before the recombination173

event can decouple them. It is given by174 ∫ ∞
tb=tl−1∧tl

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ dtl, Gl = ωl, Xl = xl, T

B ∈ dtb}

= δtl−1,tlδωl−1,ωlδxl−1,xl
1

nωl−1
q(0,e)
α,aωl

(tl−1 − te−1)e−ρtl−1 ,

[15]175

with e = ε(tl−1 ∧ tl). The second term in (14) represents the case when recombination decouples the lineages at the two loci,176

and they are both absorbed independently. It yields177 ∫ tl−1∧tl

tb=0
P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T

A
l ∈ dtl, Gl = ωl, Xl = xl, T

B ∈ dtb}

= 1
nωl−1

1
nωl

×

(
e−1∑
ε=1

∫ tε

tb=tε−1

∑
η∈Γε

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

+
∫ tl−1∧tl

tb=te−1

∑
η∈Γε

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

)
,

[16]178

Matthias Steinrücken, Jack Kamm, Jeffrey P. Spence, Yun S. Song 5 of 28



which is partitioned with respect to the epoch ε during which the recombination event occurred and the random sub-population179

{GBtb = η} that the coupled additional lineages were residing in at the time of the event. Note that in this partitioning, only180

the epochs of positive length have to be considered, since the probability of recombination in an epoch of length zero is zero.181

For a given epoch ε of positive length, partitioning with respect to the possible sub-populations at the beginning and the182

end of epoch ε, the inner term of the first summand in (16) yields183

∫ tε

tb=tε−1

∑
η∈Γε

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

=
∫ tε

tb=tε−1

P{TB ∈ dtb}
∑
η∈Γε

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, G

B
tb = η|TB ∈ dtb}

=
∫ tε

tb=tε−1

ρe−ρtb
∑
η∈Γε

∑
γε∈Γε

p(0,ε−1)
α,γε

(
e(tb−tε−1)Zε

)
γε,η

×
∑

Zε+1∈Γε+1

∑
ζε∈Γε

ζε⊂Zε+1

(
e(tε−tb)Zε

)
η,ζε

q
(ε,ε(tl−1))
Zε+1,aωl−1

(tl−1 − tε(tl−1)−1)

×
∑

Ξε+1∈Γε+1

∑
ξε∈Γε

ξε⊂Ξε+1

(
e(tε−tb)Zε

)
η,ξε

q
(ε,ε(tl))
Ξε+1,aωl

(tl − tε(tl)−1) dtb

=
∑
γε∈Γε

∑
Zε+1∈Γε+1

∑
ζε∈Γε

ζε⊂Zε+1

∑
Ξε+1∈Γε+1

∑
ξε∈Γε

ξε⊂Ξε+1

p(0,ε−1)
α,γε

×R(ε)
γε,(ζε,ξε)q

(ε,ε(tl−1))
Zε+1,aωl−1

(tl−1 − tε(tl−1)−1)q(ε,ε(tl))
Ξε+1,aωl

(tl − tε(tl)−1),

[17]184

where185

R
(ε)
γε,(ζε,ξε) :=

∑
η∈Γε

∫ tε

tb=tε−1

ρe−ρtb
(
e(tb−tε−1)Zε

)
γε,η

(
e(tε−tb)Zε

)
η,ζε

(
e(tε−tb)Zε

)
η,ξε

dtb

= ρ
∑
η∈Γε

2gε∑
k=1

2gε∑
m=1

2gε∑
n=1

(v(ε)
k w

(ε)
k )γε,η(v(ε)

m w(ε)
m )η,ζε(v

(ε)
n w(ε)

n )η,ξε

×
∫ tε

tb=tε−1

e−ρtbeλ
(ε)
k

(tb−tε−1)eλ
(ε)
m (tε−tb)eλ

(ε)
n (tε−tb) dtb

= ρ
∑
η∈Γε

2gε∑
k=1

2gε∑
m=1

2gε∑
n=1

(v(ε)
k w

(ε)
k )γε,η(v(ε)

m w(ε)
m )η,ζε(v

(ε)
n w(ε)

n )η,ξε

×Htε
tε−1((λ(ε)

m + λ(ε)
n )tε − λ(ε)

k tε−1, λ
(ε)
k − λ

(ε)
m − λ(ε)

n − ρ),

[18]186

using the spectral decomposition to simplify the matrix exponentials. Note that this quantity is independent of tl−1 and tl.187

The definition188

Hb
a(u, λ) =

∫ b

t=a
eλt+u dt =


1
λ

(eλb+u − eλa+u), if <(u) 6= ±∞, b 6=∞, λ ∈ C\{0},
eu(b− a), if <(u) 6= ±∞, b 6=∞, λ = 0,
− 1
λ
eλa+u, if <(u) 6= ±∞, b =∞, <(λ) < 0,

0, if <(u) = −∞,

[19]189

is used for the integral term in (18), with b > a ≥ 0. This definition covers all the relevant cases, since <(λ(ε)
n ) ≤ 0 holds for all190

ε and n, and <(λ(ε)
n ) = 0 implies λ(ε)

n = 0 for Zε considered here. Also, whenever <(u) 6= ±∞ and b =∞, then <(λ) < 0, if191

ρ > 0. In addition, for a <∞ and u 6=∞, the definition192

0 ·H∞a (u, 0) = 0 · lim
b→∞

Hb
a(u, 0) = lim

b→∞

(
0 ·Hb

a(u, 0)
)

= lim
b→∞

0 = 0 [20]193

has to be used in the appropriate cases.194
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Focusing on the second summand in (16), assume without loss of generality that tl−1 < tl. For the case ε(tl−1) 6= ε(tl),195 ∫ tl−1

tb=te−1

∑
η∈Γe

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

=
∫ tl−1

tb=te−1

P{TB ∈ dtb}
∑
η∈Γe

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, G

B
tb = η|TB ∈ dtb}

=
∫ tl−1

tb=te−1

ρe−ρtb
∑
ηe∈Γe

∑
γ∈Γe

p(0,e−1)
α,γe

(
e(tb−te−1)Ze

)
γe,η

(
Zee

(tl−1−tb)Ze
)
η,aωl−1

×
∑

Ξe+1∈Γe+1

∑
ξe∈Γe

ξe⊂Ξe+1

(
e(te−tb)Ze

)
η,ξe

q
(e,ε(tl))
Ξe+1,aωl

(tl − tε(tl)−1) dtb,

[21]196

holds, whereas the summand yields197 ∫ tl−1∧tl

tb=te−1

ρe−ρtb
∑
η∈Γe

∑
γe∈Γe

p(0,e−1)
α,γe

(
e(tb−te−1)Ze

)
γe,η

×
(
Zee

(tl−1−tb)Ze
)
η,aωl−1

(
Zee

(tl−tb)Ze
)
η,aωl

dtb

[22]198

for the case ε(tl−1) = ε(tl). It is possible to obtain more explicit expressions for the integrals in (21) and (22), and to199

compute them numerically, using the spectral decompositions introduced in Section 1.3.3. However, we will not provide these200

computations here, but rather provide the full details for the discretized HMM underlying πDΘ in the next section. Finally, note201

that we provided the details for computing the joint density for the absorbing lineages at locus l − 1 and l here, but dividing202

this density by the marginal density at locus l − 1 yields the requisite transition density for the HMM.203

1.4.3. Emission. Conditional on the absorption time tl, the number of mutation events is Poisson distributed with parameter θ,204

the mutation rate. Thus, the emission probability is given as205

P{H[l] = a|TAl ∈ dtl, Gl = ωl, Xl = xl}

=
(
etlθ(P−1))

xl[l],a
,

[23]206

where H denotes the additionally sampled haplotype, a ∈ E, xl[l] is the allele that the absorbing lineage bears at locus l, and207

P is the mutation matrix that governs the transitions between the alleles.208

1.5. Discretized HMM. To compute the approximate CSD πTΘ(h|α,n) under the continuous model, one would have to integrate209

the probability of observing h given a certain sequence of marginal additional genealogies over all possible such sequences.210

Since the HMM over this infinite state space cannot be implemented efficiently, we will introduce another approximation by211

discretizing the hidden state space. In this section, we will provide details about the initial, transition and emission probabilities212

for the discrete HMM underlying the CSD πDΘ . The basic idea is to integrate the respective densities introduced in the previous213

section over the discretization intervals. For ease of notation, we will use the partition of the past into demographic epochs as214

the discretization of the absorption time. However, we describe in Section 6 how this restriction can be relaxed. Furthermore,215

note that the epochs of length zero do not yield valid hidden states of the discretized HMM.216

The hidden state space then comprises of an epoch of absorption i ∈ E , a population where absorption takes place ω ∈ Γi,217

and an absorbing trunk-lineage x ∈ nω. For arbitrary hidden states sl = (il, ωl, xl) and sl−1 = (il−1, ωl−1, xl−1), the initial218

probabilities219

ν(sl) := P
{
TAl ∈ Iil , Gl = ωl, Xl = xl

}
, [24]220

the transition probabilities221

φ(sl|sl−1) := P
{
TAl ∈ Iil , Gl = ωl, Xl = xl

∣∣
TAl−1 ∈ Iil−1 , Gl−1 = ωl−1, Xl−1 = xl−1

} [25]222

and the emission probabilities223

ξ(h[l]|sl) := P
{
H[l] = h[l]

∣∣TAl ∈ Iil , Gl = ωl, Xl = xl
}
, [26]224

can be computed using suitable combinations of the matrix exponentials describing the evolution of the Markov chain that225

governs the dynamics of the marginal additional lineage backwards in time. In the following sections, we provide the details of226

these computations. Note that the requisite Markov chain becomes inhomogeneous when considering more general population227

size models such as exponential growth. The solution then cannot be obtained by matrix exponentials, but we rather have228

to resort to numerical approximations via step-wise solving of the associated differential equations. Both procedures are229

implemented in our software package. A realization of the discretized CSD can be seen in Figure S6B.230
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1.5.1. Marginal/Initial probability. The probability that the additional lineage residing in sub-population Ξ at time tε is absorbed231

into any lineage of the trunk within the sub-population ω during the interval Ii is given by232

Q
(ε)
Ξ,aω (i) :=

∫ ti

t=ti−1

q
(ε,i)
Ξ,aω (t− ti−1) dt

=
∫ ti

t=ti−1

∑
γi∈Γi

p
(ε,i−1)
Ξ,γi

(
Zie

(t−ti−1)Zi
)
γi,aω

dt

=
∑
γi∈Γi

p
(ε,i−1)
Ξ,γi

2gi∑
k=1

(v(i)
k w

(i)
k )γi,aωλ

(i)
k e−λ

(i)
k
ti−1

∫ ti

t=ti−1

eλ
(i)
k
t dt

=
∑
γi∈Γi

p
(ε,i−1)
Ξ,γi

2gi∑
k=1

(v(i)
k w

(i)
k )γ,aωλ

(i)
k e−λ

(i)
k
ti−1Hti

ti−1
(0, λ(i)

k )

[27]233

where we used q as defined in (13), and H as in (19) and (20). The discretized initial probability of being absorbed during the234

interval Ii in sub-population ωl ∈ Γi into the lineage xl ∈ nωl is then given as235

ν(ωl, i, xl) := P{TAl ∈ Ii, Gl = ωl, Xl = xl} = 1
nωl

u(ωl, i) [28]236

with237

u(ω, i) :=
∫ ti

t=ti−1

q(0,i)
α,aω (t− ti−1) dt = Q(0)

α,aω (i). [29]238

1.5.2. Transition probability. To derive the transition probability, for given i, j ∈ E , we again start by focusing on the joint239

probability that the additional lineage at locus l − 1 is absorbed during the interval Ii into the trunk-lineage xl−1 ∈ nωl−1240

residing in sub-population ωl−1 ∈ Γi, and the lineage at locus l is absorbed during Ij into xl ∈ nωl , with ωl ∈ Γj . This241

probability is given by242

P{TAl−1 ∈ Ii, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ Ij , Gl = ωl, Xl = xl}

=
∫ ti

tl−1=ti−1

∫ tj

tl=tj−1

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, Xl−1 = xl−1, T
A
l ∈ dtl, Gl = ωl, Xl = xl}.

[30]243

Substituting (14) into (30), the coupled term isolated in (15) yields244 ∫ ti

tl−1=ti−1

∫ tj

tl=tj−1

δ(tl−1 − tl)δωl−1,ωlδxl−1,xle
−ρtl−1q(0,µ)

α,aωl−1
(tl−1 − tµ−1) 1

nωl−1
dtl−1 dtl

=
∫ ti

tl−1=ti−1

1{tl−1∈Ij}δωl−1,ωlδxl−1,xle
−ρtl−1q(0,µ)

α,aωl
(tl−1 − tµ−1) 1

nωl−1
dtl−1

= δi,jδωl−1,ωlδxl−1,xl
1

nωl−1

∫ ti

tl−1=ti−1

e−ρtl−1
∑
γµ∈Γµ

p(0,µ−1)
α,γµ

(
Zµe

(tl−1−tµ−1)Zµ
)
γµ,aωl−1

dtl−1

= δi,jδωl−1,ωlδxl−1,xl
1

nωl−1

∑
γµ∈Γµ

p(0,µ−1)
α,γµ

×
2gµ∑
k=1

(v(µ)
k w

(µ)
k )γµ,aωl−1

λ
(µ)
k e−λ

(µ)
k

tµ−1

∫ ti

tl−1=ti−1

e−ρtl−1eλ
(µ)
k

tl−1 dtl−1

= δi,jδωl−1,ωlδxl−1,xl
1

nωl−1

∑
γµ∈Γµ

p(0,µ−1)
α,γµ

×
2gµ∑
k=1

(v(µ)
k w

(µ)
k )γµ,aωl−1

λ
(µ)
k H

tµ
tµ−1

(−λ(µ)
k tµ−1, λ

(µ)
k − ρ),

[31]245

with µ = i ∧ j, and H as defined in (19) and (20).246

Furthermore, after substituting, the term in parentheses in the decoupled term isolated in (16) yields247 ∫ ti

tl−1=ti−1

∫ tj

tl=tj−1

(
µ−1∑
ε=1

∫ tε

tb=tε−1

∑
η∈Γε

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

+
∫ tl−1∧tl

tb=tµ−1

∑
η∈Γµ

P{TAl−1 ∈ dtl−1, Gl−1 = ωl−1, T
A
l ∈ dtl, Gl = ωl, T

B ∈ dtb, GBtb = η}

)
.

[32]248
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Again, fixing ε and focusing on a summand of the first sum in (32) yields249 ∫ tε

tb=tε−1

ρe−ρtb
∑
η∈Γε

∑
γε∈Γε

p(0,ε−1)
α,γε

(
e(tb−tε−1)Zε

)
γε,η

×
∑

Zε+1∈Γε+1

∑
ζε∈Γε

ζε⊂Zε+1

(
e(tε−tb)Zε

)
η,ζε

∫ ti

tl−1=ti−1

q
(ε,i)
Zε+1,aωl−1

(tl−1 − ti−1) dtl−1

×
∑

Ξε+1∈Γε+1

∑
ξε∈Γε

ξε⊂Ξε+1

(
e(tε−tb)Zε

)
η,ξε

∫ tj

tl=tj−1

q
(ε,j)
Ξε+1,aωl

(tl − tj−1) dtl dtb

=
∑
γε∈Γε

∑
Zε+1∈Γε+1

∑
Ξε+1∈Γε+1

p(0,ε−1)
α,γε Q

(ε)
Zε+1,aωl−1

(i)Q(ε)
Ξε+1,aωl

(j)

×
∑
η∈Γε

∑
ζε∈Γε

ζε⊂Zε+1

∑
ξε∈Γε

ξε⊂Ξε+1

∫ tε

tb=tε−1

ρe−ρtb
(
e(tb−tε−1)Zε

)
γε,η

(
e(tε−tb)Zε

)
η,ζε

(
e(tε−tb)Zε

)
η,ξε

dtb

=
∑
γε∈Γε

∑
Zε+1∈Γε+1

∑
Ξε+1∈Γε+1

p(0,ε−1)
α,γε R

(ε)
γε,(Zε+1,Ξε+1)Q

(ε)
Zε+1,aωl−1

(i)Q(ε)
Ξε+1,aωl

(j),

[33]250

where Q(·)
·,· (·) was defined in (27), and R(·)

·,(·,·) was defined in (18).251

For the second summand in (32) the cases i 6= j and i = j have to be distinguished Assume without loss of generality i < j,252

so µ = i. Then, focusing on the case i < j gives253 ∫ tµ

tl−1=tµ−1

∫ tj

tl=tj−1

∫ tl−1

tb=tµ−1

ρe−ρtb
∑
η∈Γµ

∑
γµ∈Γµ

p(0,µ−1)
α,γµ

(
e(tb−tµ−1)Zµ

)
γµ,η

(
Zµe

(tl−1−tb)Zµ
)
η,aωl−1

×
∑

Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1

(
e(tµ−tb)Zµ

)
η,ξµ

q
(µ,j)
Ξµ+1,aωl

(tl − tj−1) dtb dtl dtl−1

=
∑
η∈Γµ

∑
γµ∈Γµ

∑
Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1

p(0,µ−1)
α,γµ Q

(µ)
Ξµ+1,aωl

(j)

×
∫ tµ

tl−1=tµ−1

∫ tl−1

tb=tµ−1

ρe−ρtb
(
e(tb−tµ−1)Zµ

)
γµ,η

(
e(tµ−tb)Zµ

)
η,ξµ

(
Zµe

(tl−1−tb)Zµ
)
η,aωl−1

dtb dtl−1

=
∑
η∈Γµ

∑
γµ∈Γµ

∑
Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1

p(0,µ−1)
α,γµ Q

(µ)
Ξµ+1,aωl

(j)

×
2gµ∑
k=1

2gµ∑
m=1

2gµ∑
n=1

(v(µ)
k w

(µ)
k )γµ,η(v(µ)

m w(µ)
m )η,ξµ(v(µ)

n w(µ)
n )η,aωl−1

× ρλ(µ)
n eλ

(µ)
m tµ−λ

(µ)
k

tµ−1

∫ tµ

tl−1=tµ−1

eλ
(µ)
n tl−1

∫ tl−1

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tb dtb dtl−1.

[34]254

Changing the order of integration in the integral expression in (34) yields255

λ(µ)
n

∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tb

∫ tµ

tl−1=tb

eλ
(µ)
n tl−1 dtl−1 dtb

=
∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tb(eλ

(µ)
n tµ − eλ

(µ)
n tb) dtb

= eλ
(µ)
n tµ

∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tbdtb −

∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −ρ)tb dtb.

[35]256

Note that the second term in (35) does not depend on n anymore. Thus, when substituting it back into expression (34) this257

term vanishes, since
∑2gµ

n=1(v(µ)
n w

(µ)
n )ηb,aωl−1

= (1)ηb,aωl−1
= 0. The first term in (35) can be written as258

H
tµ
tµ−1

(λ(µ)
n tµ, λ

(µ)
k − λ(µ)

m − λ(µ)
n − ρ), [36]259
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using the definitions (19) and (20). Note that i < j and thus tµ < ∞ hold, so this quantity is well defined. Substituting it260

into (34) yields261 ∑
η∈Γµ

∑
γµ∈Γµ

∑
Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1

p(0,µ−1)
α,γµ Q

(µ)
Ξµ+1,aωl

(j)

×
2gµ∑
k=1

2gµ∑
m=1

2gµ∑
n=1

(v(µ)
k w

(µ)
k )γµ,η(v(µ)

m w(µ)
m )η,ξµ(v(µ)

n w(µ)
n )η,aωl−1

× ρHtµ
tµ−1

(
(λ(µ)
m + λ(µ)

n )tµ − λ(µ)
k tµ−1, λ

(µ)
k − λ(µ)

m − λ(µ)
n − ρ

)
=
∑
γµ∈Γµ

p(0,µ−1)
α,γµ

∑
Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1

R
(µ)
γµ,(aωl−1 ,ξµ)Q

(µ)
Ξµ+1,aωl

(j).

[37]262

In the case i = j = µ, the second summand in (32) gives263 ∫ tµ

tl−1=tµ−1

∫ tµ

tl=tµ−1

∫ tl−1∧tl

tb=tµ−1

ρe−ρtb
∑
η∈Γµ

∑
γµ∈Γµ

p(0,µ−1)
α,γµ

×
(
e(tb−tµ−1)Zµ

)
γµ,ηb

(
Zµe

(tl−1−tb)Zµ
)
η,aωl−1

(
Zεe

(tl−tb)Zµ
)
η,aωl

dtb dtl dtl−1

=
∑
η∈Γε

∑
γµ∈Γε

p(0,µ−1)
α,γµ

2gµ∑
k=1

2gµ∑
m=1

2gµ∑
n=1

(v(µ)
k w

(µ)
k )γµ,η(v(µ)

m w(µ)
m )η,aωl−1

(v(µ)
n w(µ)

n )η,aωl

× ρλ(µ)
m λ(µ)

n e−λ
(µ)
k

tµ−1

∫ tµ

tl−1=tµ−1

∫ tµ

tl=tµ−1

∫ tl−1∧tl

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tbeλ

(µ)
m tl−1eλ

(µ)
n tl dtb dtl dtl−1.

[38]264

Again, considering only the integral part in (32), and exchanging the order of integration yields265

λ(µ)
m λ(µ)

n

∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tb

[∫ tµ

tl−1=tb

eλ
(µ)
m tl−1 dtl−1

][ ∫ tµ

tl=tb

eλ
(µ)
n tl dtl

]
dtb.

=
∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tb

[
eλ

(µ)
m tµ − eλ

(µ)
m tb

][
eλ

(µ)
n tµ − eλ

(µ)
n tb

]
dtb

=
∫ tµ

tb=tµ−1

e(λ(µ)
k
−λ(µ)

m −λ
(µ)
n −ρ)tbe(λ(µ)

m +λ(µ)
n )tµ dtb

= H
tµ
tµ−1

(
(λ(µ)
m + λ(µ)

n )tµ, λ(µ)
k − λ(µ)

m − λ(µ)
n − ρ),

[39]266

with H as defined in (19) and (20). Here the second equality holds, since upon solving the brackets, only the first summand is267

dependent on k, m, and n. The other summands then vanish due to a similar argument as was used in deriving equation (36).268

Substituting the right hand side of (39) into (38) gives269 ∑
η∈Γε

∑
γµ∈Γε

p(0,µ−1)
α,γµ

2gµ∑
k=1

2gµ∑
m=1

2gµ∑
n=1

(v(µ)
k w

(µ)
k )γµ,η(v(µ)

m w(µ)
m )η,aωl−1

(v(µ)
n w(µ)

n )η,aωl

× ρHtµ
tµ−1

(
(λ(µ)
m + λ(µ)

n )tµ − λ(µ)
k tµ−1, λ

(µ)
k − λ(µ)

m − λ(µ)
n − ρ)

=
∑
γµ∈Γε

p(0,µ−1)
α,γµ R

(µ)
γµ,(aωl−1 ,aωl )

.

[40]270

Combining (31), (33), (37), and (40) gives the joint absorption probability (30).271

The discretized transition probability can then be obtained by dividing the joint probability through the marginal probability272

at locus l − 1:273

φ(il, ωl,xl|il−1, ωl−1, xl−1)

:=P{TAl ∈ Iil , Gl = ωl, Xl = xl|TAl−1 ∈ Iil−1 , Gl−1 = ωl−1, Xl−1 = xl−1}

=y(il−1, ωl−1)δil−1,ilδωl−1,ωlδxl−1,xl + z(il, ωl|il−1, ωl−1) 1
nωl

.

[41]274

Here275

y(i, ωl−1) := 1
u(i, ωl−1)

∑
γi∈Γi

p(0,i−1)
α,γi

2gi∑
k=1

(v(i)
k w

(i)
k )γi,aωl−1

λ
(i)
k Hti

ti−1
(−λ(i)

k ti−1, λ
(i)
k − ρ), [42]276
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with u(·, ·) as defined in (29). Furthermore, with µ = i ∧ j, define277

z(j, ωl|i, ωl−1) := 1
u(i, ωl−1)

[ µ−1∑
ε=1

∑
γε∈Γε

p(0,ε−1)
α,γε

∑
Zε+1∈Γε+1

∑
ζε∈Γε

ζε⊂Zε+1

∑
Ξε+1∈Γε+1

∑
ξε∈Γε

ξε⊂Ξε+1

R
(ε)
γε,(ζε,ξε)

×Q(ε)
Zε+1,aωl−1

(i)Q(ε)
Ξε+1,aωl

(j)

+
∑
γµ∈Γµ

p(0,µ−1)
α,γµ W

(µ)
γµ,(aωl−1 ,aωl )

(i, j)
]
,

[43]278

where279

W
(µ)
γµ,(aωl−1 ,aωl )

(i, j) :=


∑

Ξµ+1∈Γµ+1

∑
ξµ∈Γµ

ξµ⊂Ξµ+1
R

(µ)
γµ,(aωl−1 ,ξµ)Q

(µ)
Ξµ+1,aωl

(j), if i < j,

R
(µ)
γµ,(aωl−1 ,aωl )

, if i = j,

W
(µ)
γµ,(aωl ,aωl−1 )(j, i), if i > j.

[44]280

1.5.3. Emission probability. Finally, the emission probability, that is, the probability that the observed haplotype H carries the281

allele a at locus l given that the additional lineage at this locus is absorbed during the interval Ii in sub-population ωl ∈ Γi282

into the lineage xl ∈ nωl can be computed as283

P{H[l] = a|TAl ∈ Ii, Gl = ωl, Xl = xl}

= P{H[l] = a, TAl ∈ Ii, Gl = ωl, Xl = xl}
P{TAl ∈ Ii, Gl = ωl, Xl = xl}

= P{H[l] = a, TAl ∈ Ii, Gl = ωl, Xl = xl}
u(i, ωl)

nωl .

[45]284

Using (23) and (13), the numerator in (45) yields285

P{H[l] = a, TAl ∈ Ii, Gl = ωl, Xl = xl}nωl

=
∫ ti

tl=ti−1

P{H[l] = a, TAl ∈ dtl, Gl = ωl, Xl = xl}nωl

=
∫ ti

tl=ti−1

P{H[l] = a|TAl ∈ dtl, Gl = ωl, Xl = xl}P{TAl ∈ dtl, Gl = ωl, Xl = xl}nωl

=
∫ ti

tl=ti−1

(
etlθ(P−1))

xl[l],a

∑
γi∈Γi

p(0,i−1)
α,γi

(
Zie

(tl−ti−1)Zi
)
γi,aωl

dtl

=
∑
γi∈Γi

p(0,i−1)
α,γi

|E|∑
j=1

2gi∑
k=1

(vjwj)xl[l],a(v(i)
k w

(i)
k )γi,aωlλ

(i)
k Hti

ti−1

(
− λ(i)

k ti−1, θ(lj − 1) + λ
(i)
k

)
,

[46]286

where lj (with <(lj) ≤ 0) are the eigenvalues of P , vj are its eigenvectors, and wj the are row-vectors of the matrix inverse to287

the matrix made up of the column vectors vj . Again, H is as defined in (19) and (20). Combining (45) with (46) yields, with288

u(·, ·) as defined in (29),289

ξ(a|i, ωl, xl) := P{H[l] = a|TAl ∈ Ii, Gl = ωl, Xl = xl}

= 1
u(i, ωl)

∑
γi∈Γi

p(0,i−1)
α,γi

|E|∑
j=1

2gi∑
k=1

(vjwj)xl[l],a(v(i)
k w

(i)
k )γi,aωlλ

(i)
k

×Hti
ti−1

(
− λ(i)

k ti−1, θ(lj − 1) + λ
(i)
k

) [47]290

for the emission probability of the discretized HMM underlying the CSD πDΘ .291

2. Forward-Backward Algorithm292

Given a certain demographic history Θ and an observed configuration n, denote by Hα,n
Θ ∈ EL the random haplotype293

additionally sampled in sub-population α which is distributed according to the CSD πDΘ , that is, Hα,n
Θ ∼ πDΘ (·|α,n). Note294

that the distribution implicitly depends on the recombination rate ρ and the mutational model (θ, P ) as well. The probability295

P{Hα,n
Θ = h} of observing a certain additional haplotype h ∈ EL can be computed under the HMM defined by the probabilities296

ν, φ, and ξ given in Section 1.5 using the forward algorithm. To this end denote by S :=
{

(i, ω, x)
∣∣i ∈ E , ω ∈ Γi, x ∈ nω

}
the set297

of hidden states, so a hidden state comprises of an interval i during which the additional lineage is absorbed, a sub-population298

ω in which absorption happens, and a trunk-lineage x that the lineage is absorbed into. Further, for 1 ≤ l ≤ L, denote by299

Sl ∈ S the random hidden state at locus l, and by Sα,nΘ := (S1, . . . , SL) the full sequence of hidden states.300
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2.1. Forward Algorithm. Given the hidden state sl = (il, ωl, xl) ∈ S, the forward probability301

Fl(sl) := P
{
Hα,n

Θ [1 : l] = h[1 : l], Sl = sl
}

= P
{
Hα,n

Θ [1 : l] = h[1 : l], TAl ∈ Iil , Gl = ωl, Xl = xl
} [48]302

is the joint probability of observing the partial haplotype h[1 : l] up to locus l, and the additional lineage being absorbed into303

haplotype xl in sub-population ωl during interval il at locus l. Dynamic programming can be used to compute Fl(sl) via the304

dynamic program:305

Fl(sl) = ξ(hl|sl)
∑

sl−1∈S

Fl−1(sl−1)φ(sl|sl−1)

= ξ(hl|il, ωl, xl)
[
y(il, ωl)Fl−1(il, ωl, xl)

+ 1
nωl

∑
il−1∈E,

ωl−1∈Γil−1

z(il, ωl|il−1, ωl−1)
∑

xl−1∈nωl−1

Fl−1(il−1, ωl−1, xl−1)
]
.

[49]306

The initial value for this dynamic program is given by307

F1(i1, ω1, x1) = ξθ(h1|i1, ω1, x1, )
1
nω1

u(i1, ω1). [50]308

Note that if the haplotypes associated with lineages x and x′ from the trunk are identical, then we have Fl(i, ω, x) = Fl(i, ω, x′)309

for all l, i, ω. Finally, the probability of observing the additional haplotype is given as310

P{Hα,n
Θ = h} =

∑
sL∈S

P
{
Hα,n

Θ [1 : L] = h[1:L], SL = sL
}

=
∑
sL∈S

FL(sL). [51]311

A naïve implementation of (49) would, for all sl ∈ S, iterate over every sl−1 ∈ S. This would result in a quadratic dependence312

of the runtime on the size of the hidden state space, implying a quadratic dependence on the number of haplotypes in the313

trunk. To this end, define314

Q[il−1, ωl−1] :=
∑

xl−1∈nωl−1

Fl−1(il−1, ωl−1, xl−1), [52]315

and316

R[il, ωl] :=
∑

il−1∈E,
ωl−1∈Γil−1

z(il, ωl|il−1, ωl−1)Q[il−1, ωl−1]. [53]317

Pre-computing R[il, ωl] and re-using it in (49) allows for an implementation whose runtime only depends linearly on the number318

of haplotypes in the trunk. Thus, the algorithm to compute the forward probabilities and ultimately the likelihood has runtime319

complexity O(Lnd2), where d = Eg. Recall that L denotes the number of loci, n the number of haplotypes, E the number of320

discretization intervals, and g the number of sub-populations at present.321

2.2. Backward algorithm. The backward probability322

Bl(sl) = P{Hα,n
Θ [l + 1 : L] = h[l + 1 : L]|TAl ∈ Iil , Gl = ωl, Xl = xl} [54]323

is the probability of observing the alleles h[l + 1 : L] following locus l, conditional on the hidden state at locus l. This quantity324

can again be used to compute the observation probability, but it is also necessary for the expectation-maximization procedure325

that will be introduced in Section 3. It is possible to write down an explicit backward algorithm for the computation, however,326

here we proceed along a different route.327

To this end define328

F ∗l (sl) := P{Hα,n
Θ [1 : (L− l + 1)] = h[L:l], SL−l+1 = sl}

= P{Hα,n
Θ [l : L] = h[L:l], SL = sl}

= P{Hα,n
Θ [l : L] = h[l:L], Sl = sl},

[55]329

where h[L : l] denotes the reversed vector (h[L], . . . , h[l]), and equality in (55) holds since the transition probability is reversible330

with respect to the initial distribution. Note that (49) can also be used to compute F ∗l , if Fl is replaced by F ∗l−1, Fl−1 replaced331

by F ∗l , and the observed alleles are adjusted accordingly to the reversed haplotype h[L : l]. Using the modified forward332

probability F ∗l , the backward probability can be obtained via333

Bl(sl) = F ∗l (sl)
ξθ(hl|sl) 1

nωl
u(il, ωl)

. [56]334
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3. Parametric Inference via EM335

We now present several ways of combining the CSDs introduced in the previous sections in suitable composite likelihood336

frameworks. We then detail the application of the Expectation Maximization (EM) algorithm to infer demographic parameters337

in each of these frameworks.338

3.1. Composite Likelihoods. Assume that the haplotypes in a given sample configuration n are ordered by enumerating them339

from 1 to n. Thus, xi denotes the i-th haplotype and αi denotes the sub-population that the i-th haplotype resides in at the340

time the sample is taken, with 1 ≤ i ≤ n. Furthermore, for a given permutation σ of {1, . . . , n}, define341

σ(i,n) :=
i∑

j=1

eασ(j),xσ(j) [57]342

to be the configuration induced by σ and a given index i, where eα,x again denotes the configuration with a single haplotype x343

in sub-population α. Further, let344

n−i := n− eαi,xi [58]345

denote the configuration where haplotype i is removed. As before, denote by Hα,n
Θ the random additionally sampled haplotype346

distributed according to the CSD πDΘ (·|α,n).347

With this notation the product of approximate conditionals (PAC) composite likelihood (7) is given by348

PACΘ(n) := 1
K

∑
σ∈Π

n∏
i=1

P
{
H
ασ(i),σ(i−1,n)
Θ = xσ(i)

}
, [59]349

where Π := {σ1, . . . , σK} are K random permutations of {1, . . . , n}. Note that if we would substitute the true CSD in350

equation (59), each summand would yield the true likelihood of the sample, independent of the ordering σ. However, if an351

approximate CSD is used in this formula, the value of the product will depend on the order. This fact had already been noticed352

by Li and Stephens (7). To mediate the influence of the haplotype-order, following Li and Stephens, we average the product353

over several random permutations of the ordering.354

Replacing the arithmetic mean in definition (59) by a geometric mean yields355

SuperPACΘ(n) := K

√√√√∏
σ∈Π

n∏
i=1

P
{
H
ασ(i),σ(i−1,n)
Θ = xσ(i)

}
, [60]356

another approximation to the sampling probability which we term SuperPAC. Note that the latter also yields the true likelihood357

if the true CSD would be used instead of an approximation.358

The approximate CSD πDΘ (·|·) can also be employed in a leave-one-out composite likelihood (LCL)359

LCLΘ(n) :=
n∏
i=1

P
{
H
αi,n−i
Θ = xi

}
, [61]360

evaluating the product of all CSDs obtained by leaving each haplotype in turn out of the trunk, or a pairwise composite361

likelihood (PCL)362

PCLΘ(n) :=
∏
i6=j

P
{
H
αi,eαj,xj
Θ = xi

}
, [62]363

consisting of the product of CSDs between all pairs of haplotypes.364

3.2. Objective Functions. Since the composite likelihoods introduced in the previous paragraphs are combinations of the HMMs365

underlying the different CSDs, they all comprise of observed random variables Hα,n
Θ , the additionally sampled haplotypes, and366

latent random variables Sα,nΘ , the associated sequences of hidden states. To obtain a maximum composite likelihood estimate367

of the demographic parameters Θ that best describe a given sample of haplotypes n under a certain composite likelihood, we368

apply the standard expectation-maximization (EM) framework (8).369

The general outline of the EM algorithm is as follows. Suppose we have parameters Θ, and random variables XΘ,SΘ, where370

XΘ = X is observed, and SΘ is unobserved (hidden). We would like to find the value of Θ that maximizes the likelihood371

L(Θ) = P(XΘ = X). To do so, first choose initial parameters Θ(0), and then update them iteratively. At step k + 1, the372

parameters Θ(k+1) are obtained by maximizing a certain objective function Q based on Θ(k), that is373

Θ(k+1) = argmax
Θ

Q(Θ|Θ(k)). [63]374

where Q(Θ|Θ(k)) = ES
Θ(k) [log P(XΘ = X,SΘ = SΘ(k)) | XΘ(k) = X], where the expectation is taken over SΘ(k) , as indicated by375

the subscript. Then Θ(k) is guaranteed to converge to a local maximum of the likelihood surface L(Θ).376
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We can apply EM to find local maxima of our composite likelihoods PACΘ(n), SuperPACΘ(n), LCLΘ(n), PCLΘ(n). To377

do so, for each composite likelihood, we construct a generative model and random variables XΘ,SΘ, such that the composite378

likelihood is equal to P(XΘ = X). We then derive Q·(Θ|Θ(k)) for each such model.379

Note that it is in general not possible to solve the maximization problem in (63) analytically. Thus, in the remainder of this380

section, we will describe how to evaluate the objective functions for given Θ and Θ(k), and employ it in a numerical framework,381

like the Nelder-Mead simplex algorithm (9), to find a local maximum. The EM framework guarantees that the overall likelihood382

of the data increases with each parameter update.383

PAC. Fixing the set of random permutations Π, definition (59) can be interpreted as a mixture model: First, pick a384

permutation Ψ uniformly at random from the pool Π. Then, conditional on Ψ = σ, generate a random sample Nσ
Θ: First,385

sample a haplotype in sub-population ασ(1) given an empty trunk. Each allele at each locus is sampled from the stationary386

distribution of the mutation matrix P . Then, sample a second haplotype in sub-population ασ(2) given the first haplotype as387

the already observed trunk; a third haplotype in sub-population ασ(3) given the first two in the trunk; and so forth, until a388

sample of size n is generated. The event that the sample n is generated in this way is given by389 {
Nσ

Θ = n
}

=
n⋂
i=1

{
H
ασ(i),σ(i−1,n)
Θ = xσ(i)

}
, [64]390

Finally, PACΘ(n) = P
{
NΨ

Θ = n
}
gives the likelihood of observing the configuration n under this mixture model, and is equal391

to (59). Using our previous notation, we have the observed variable XΘ = NΨ
Θ, and the hidden latent variable SΘ = {Ψ, S·,·Θ },392

where S·,·Θ is the sequence of hidden states for every CSD.393

Let Υ be the random permutation associated with Θ(k), so SΘ(k) = {Υ, S·,·
Θ(k)}. Then we have394

QPAC(Θ|Θ(k))

= E

[
log
(

P{Ψ=Υ}
n∏
i=1

P
{
S
αΨ(i),Ψ(i−1,n)
Θ =S

αΥ(i),Υ(i−1,n)
Θ(k) , H

αΨ(i),Ψ(i−1,n)
Θ =xΥ(i)

∣∣∣Ψ=Υ
})∣∣∣∣NΥ

Θ(k) =n
]

= − log(K) +
∑
σ∈Π

P{Υ = σ|NΥ
Θ(k) = n}

×
n∑
i=1

E

[
log P

{
S
ασ(i),σ(i−1,n)
Θ = S

ασ(i),σ(i−1,n)
Θ(k) , H

ασ(i),σ(i−1,n)
Θ = xσ(i)

}∣∣∣∣Hασ(i),σ(i−1,n)
Θ(k) = xσ(i)

]
= − log(K) +

∑
σ∈Π

P
{
Nσ

Θ(k) = n
∣∣Υ = σ

}∑
τ∈Π P

{
Nτ

Θ(k) = n
∣∣Υ = τ

} n∑
i=1

Q
ασ(i),σ(i−1,n)
xσ(i) (Θ|Θ(k)).

[65]395

The second equality follows from partitioning the conditional expectation with respect to {Υ = σ} and the fact that396

P{Ψ = σ} = 1/K. The third equality follows from an application of Bayes’ rule and using the definition397

Qα,nx (Θ|Θ(k)) := E
[

log P
{
Sα,nΘ = Sα,nΘ(k) , H

α,n
Θ = x

}∣∣∣Hα,n
Θ(k) = x

]
; [66]398

the objective function for a single HMM.399

SuperPAC. Here the generating model is as follows. Again, fix the random set of permutations Π, but instead of sampling400

a dataset for a single random permutation as in the PAC mixture model, we obtain XΘ by independently sampling a dataset401

Nσ
Θ for every permutation σ. We then have SuperPACΘ(n)K = P(XΘ = (n,n, . . . ,n)), the likelihood of observing {Nσ

Θ = n}402

for each of the K permutations. The hidden latent variable SΘ is given by the sequence of hidden states for every CSD. The403

objective function for the SuperPAC composite likelihood (60) is given by404

QSuperPAC(Θ|Θ(k)) =
∑
σ∈Π

n∑
i=1

Q
ασ(i),σ(i−1,n)
xσ(i) (Θ|Θ(k)), [67]405

where taking the root can be omitted, since it is a monotone function.406

LCL. In the LCL (61) case, the objective function is407

QLCL(Θ|Θ(k)) =
n∑
i=1

Q
αi,n−i
xi (Θ|Θ(k)), [68]408

which is obtained by constructing a generative model where we independently sample the haplotype for each leave-one-out409

model.410

PCL. Lastly, the objective function for PCL (62) is411

QPCL(Θ|Θ(k)) =
∑
i 6=j

Q
αi,eαj,xj
xi (Θ|Θ(k)), [69]412
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which is obtained by a generative model where we independently sample the additional haplotype for each pair.413

Equations (65), (67), (68), and (69) show that for each of the composite likelihoods considered here the objective function414

can be written in terms of the objective functions Q·,·· for the individual HMMs involved. For a general h, α, and n, this415

function can be further simplified to obtain416

Qα,nh (Θ|Θ(k)) = E
[

log P
{
Sα,nΘ = Sα,nΘ(k) , H

α,n
Θ = h

}∣∣∣Hα,n
Θ(k) = h

]
=
∑
s∈S

E

[
log
((
νΘ(s)

)1{(Sα,n
Θ(k)

)1=s}
)∣∣∣∣Hα,n

Θ(k) = h

]
+
∑
s,s′∈S

E

[
log
((
φΘ(s′|s)

)#{s→s′})∣∣∣∣Hα,n
Θ(k) = h

]
+
∑
s∈S

∑
a∈E

E

[
log
((
ξΘ(a|s)

)#{s↑a})∣∣∣∣Hα,n
Θ(k) = h

]
=
∑
s∈S

log
(
νΘ(s)

)
P
{

(Sα,nΘ(k))1 = s
∣∣Hα,n

Θ(k) = h
}

+
∑
s,s′∈S

log
(
φΘ(s′|s)

)
E
[
#{s→ s′}

∣∣Hα,n
Θ(k) = h

]
+

∑
i∈E,ω∈Γi

∑
a,t∈E

log
(
ξΘ(a|i, ω, t)

)
E
[
#{(i, ω, t) ↑ a}

∣∣Hα,n
Θ(k) = h

]
.

[70]417

The initial ν, transition φ, and emission ξ probabilities are given in (28), (41), and (47). Here the subscripts Θ is used to418

emphasize their dependence on the demographic parameters. Furthermore, #{s ↑ a} denotes the number of times allele a is419

emitted from hidden state s for a given realization of Sα,n
Θ(k) and Hα,n

Θ(k) , and #{s→ s′} is the number of transitions from hidden420

state s to s′. Note that we slightly abuse the notation by conditioning on the trunk allele instead of the trunk haplotype in the421

emission probability ξ on the last line. We adjust the number of emissions appropriately.422

The second summand on the right hand side of (70) (the transition part) can be further modified to423 ∑
i∈E,ω∈Γi

∑
i′∈E,ω′∈Γi′

∑
x∈nω,x′∈nω′

log
(
yΘ(i, ω)δi,i′δω,ω′δx,x′ + 1

nω′
zΘ(i′, ω′|i, ω)

)
× E
[
#
{

(i, ω, x)→ (i′, ω′, x′)
}∣∣∣Hα,n

Θ(k) = h
]

=
∑

i∈E,ω∈Γi

∑
i′∈E,ω′∈Γi′

log
( 1
nω′

zΘ(i′, ω′|i, ω)
)(

E
[
#
{

(i, ω)→ (i′, ω′)
}∣∣∣Hα,n

Θ(k) = h
]

− δi,i′δω,ω′
∑
x∈nω

E
[
#
{

(i, ω, x)→ (i, ω, x)
}∣∣∣Hα,n

Θ(k) = h
])

+
∑

i∈E,ω∈Γi

log
(
yΘ(i, ω) + 1

nω
zΘ(i, ω|i, ω)

) ∑
x∈nω

E
[
#
{

(i, ω, x)→ (i, ω, x)
}∣∣∣Hα,n

Θ(k) = h
]
,

[71]424

with425

#
{

(i, ω)→ (i′, ω′)
}

:=
∑

x∈nω,x′∈nω′

#
{

(i, ω, x)→ (i′, ω′, x′)
}
. [72]426

We introduce this modification, since a naïve implementation of the left hand side of (71) would depend quadratically on the427

number of haplotypes in the trunk, whereas the right hand side only depends linearly on this number.428

3.3. Computing the Conditional Expectations. We now provide the details on how to compute the conditional probabilities and429

expectations that are required to evaluate (71) and the objective function (70), which can then be used to evaluate the objective430

functions for the different composite likelihoods. Assume that for all l ∈ {1, . . . , L} and all s ∈ S the forward probabilities431

Fl(s) and the backward probabilities Bl(s) introduced in Section 2 haven been computed under the parameters Θ(k).432

The posterior probabilities for the initial hidden state are then given by433

P
{

(Sα,nΘ(k))1 = s
∣∣Hα,n

Θ(k) = h
}

=
P
{

(Sα,n
Θ(k))1 = s,Hα,n

Θ(k) = h
}

P
{
Hα,n

Θ(k) = h
}

= 1
P
{
Hα,n

Θ(k) = h
}∑
s∈S

νΘ(k)(s)ξΘ(k)(h1|s)B1(s).
[73]434
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The conditional expectation in (71) that is marginalized over the absorbing haplotypes can be evaluated using435

E
[
#
{

(i, ω)→ (i′, ω′)
}∣∣∣Hα,n

Θ(k) = h
]

= 1
P
{
Hα,n

Θ(k) = h
} L∑

l=1

∑
x∈nω,x′∈nω′

(
yΘ(k)(i, ω)δi,i′δω,ω′δx,x′ + 1

nω′
zΘ(k)(i′, ω′|i, ω)

)
× Fl(i, ω, x)ξΘ(k)(hl+1|i′, ω′, x′)Bl+1(i′, ω′, x′)

= 1
P
{
Hα,n

Θ(k) = h
} L∑

l=1

[
1
nω′

zΘ(k)(i′, ω′|i, ω)
(∑
x∈nω

Fl(i, ω, x)
)
×
∑

x′∈nω′

ξΘ(k)(hl+1|i′, ω′, x′)Bl+1(i′, ω′, x′)

+ δi,i′δω,ω′yΘ(k)(i, ω)
∑
x∈nω

Fl(i, ω, x)ξΘ(k)(hl+1|i, ω, x)Bl+1(i, ω, x)
]
.

[74]436

Again, the computation of right hand side only depends linearly on the number of haplotypes in the trunk. The expectation437

involving the transition from a certain hidden state to itself is given by438

E
[
#
{

(i, ω, x)→ (i, ω, x)
}∣∣∣Hα,n

Θ(k) = h
]

= 1
P
{
Hα,n

Θ(k) = h
}(yΘ(k)(i, ω) + 1

nω′
zΘ(k)(i′, ω′|i, ω)

) L∑
l=1

Fl(i, ω, x)ξΘ(k)(hl+1|i, ω, x)Bl+1(i, ω, x).
[75]439

Finally,440

E
[
#{(i, ω, t) ↑ a}

∣∣Hα,n
Θ(k) = h

]
= 1

P
{
Hα,n

Θ(k) = h
} L∑

l=1

1{hl=a}
∑
x∈nω
xl=t

Fl(i, ω, x)Bl(i, ω, x) [76]441

gives the conditional expectation of the number of emissions of a certain type. The time complexity to evaluate the objective442

function (70) is O(nd2), where d = Eg. The overall complexity for the EM algorithm depends on the particular composite443

likelihood that is used.444

4. Improving computational efficiency445

We now introduce two modifications in order to speed up the computations of the forward-backward algorithm. The runtimes446

will still depend linearly on the number of loci, but the number of loci that effectively have to be considered will be reduced. In447

what follows, assume that the demographic parameters Θ, an additional haplotype h, a corresponding additional sub-population448

α, and a configuration of trunk haplotypes n are given, and consider the computations for the CSD πDΘ (h|α,n) = P
{
Hα,n

Θ = h
}
.449

4.1. Locus skipping. First we will detail a modification that decreases the number of effective loci by “skipping” over non-450

polymorphic loci. A similar modification has been introduced before (10) and it requires that the mutation matrix is such that451

every allele mutates to every other allele at the same rate. For example, this requirement is satisfied by the mutation matrix452

with Pa,a′ = 1
|E|−1 if a 6= a′, and Pa,a = 0. It follows that453

ξ(a|i, ω, a) = ξ(a′|i, ω, a′) [77]454

holds for all a, a′ ∈ E, i ∈ E , and ω ∈ Γi. The modified computations produce the exact result if the given mutation matrix455

satisfies this requirement. However, even if this is not the case, the computational benefit might outweigh the approximation456

error. Furthermore, define the set of non-polymorphic loci by457

N :=
{

1 ≤ l ≤ L
∣∣h[l] = x[l], ∀x ∈ n

}
, [78]458

that is, the set of all loci, where the additional haplotype and all the trunk haplotypes carry the same allele.459

Then, given two hidden states s = (i, ω, x), s′ = (i′, ω′, x′) ∈ S, define the k-step transition probability as460

φ(k)(s′|s)

:= P
{
TAl+k ∈ Ii′ , Gl+k = ω′, Xl+k = x′

∣∣TAl ∈ Ii, Gl = ω,Xl = x, {l + 1, . . . , l + k − 1} ⊂ N
}
.

[79]461

By conditioning on {l + 1, . . . , l + k − 1} ⊂ N we include the requirement that the intervening loci {l + 1, . . . , l + k − 1} are462

not polymorphic. The base case is given by463

φ(1)(s′|s) = y(1)(i, ω)δi′,iδω′,ωδx′,x + z(1)(i′, ω′|i, ω) 1
nω′

= y(i, ω)δi′,iδω′,ωδx′,x + z(i′, ω′|i, ω) 1
nω′

= φ(s′|s),
[80]464
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the transition probability defined in (41). Now for a given k, and any k1, k2 ∈ N with k1 + k2 = k, the recursive relation465

φ(k)(s′|s) =
∑
t∈S

φ(k2)(s′|t)ξ(hl+k1 |t)φ
(k1)(t|s)

=
∑

j∈E,ψ∈Γj

ξ(a|j, ψ, a)
∑
v∈nψ

φ(k2)(s′|j, ψ, v)φ(k1)(j, ψ, v|s)

= y(k)(i, ω)δi′,iδω′,ωδx′,x + z(k)(i′, ω′|i, ω) 1
nω′

[81]466

holds, with467

y(k)(i, ω) := ξ(a|i, ω, a)y(k2)(i, ω)y(k1)(i, ω), [82]468

and469

z(k)(i′, ω′|i, ω) := ξ(a|i, ω, a)z(k2)(i′, ω′|i, ω)y(k1)(i, ω)

+ ξ(a|i′, ω′, a)y(k2)(i′, ω′)z(k1)(i′, ω′|i, ω)

+
∑

j∈E,ψ∈Γj

ξ(a|j, ψ, a)z(k2)(i′, ω′|j, ψ)z(k1)(j, ψ|i, ω).
[83]470

The k-step transition probabilities can be employed as follows. Denote by L ′ := {1} ∪N ∪ {L} the set of polymorphic loci471

plus the first and the last. Further, define472

p(l, l′) :=
{
n(l, l′)

}
∪ p
(
n(l, l′), l′

)
, [84]473

with n(l, l′) := max{l + 2m|m ∈ N0, l + 2m < l′} for l + 1 < l′, and p(l, l + 1) := ∅. Now474

L := L ′ ∪
⋃

(l,l′) consecutive in L ′

p(l, l′) [85]475

is the set of polymorphic loci, plus a scaffold that guarantees that the distance between two consecutive loci in L is always a476

power of 2. Further, every locus between 1 and L that is not an element of L is guaranteed to be non-polymorphic. Thus, the477

forward Fl(s) and backward Bl(s) probabilities can be computed for l ∈ L using only transition probabilities of the form φ(k)
478

given in (79) with k = 2m, where m is an non-negative integer from 0 to the maximal exponent needed for the possible steps in479

L . The initial and emission probabilities do not need to be modified.480

Previously, since all steps along the sequence in the EM algorithm detailed in Section 3 have the same size, only one term481

involving the transition probability occurs on the right hand side of (70). To implement the possibility of different step sizes,482

steps of the same size have to be grouped together, and a term like the former has to be added for each group. If the set of483

polymorphic loci L ′ would be used directly for the computations, there would in general be a large number of different sizes,484

and the EM algorithm would not be very efficient. However, by using the set L instead, it is guaranteed that the sizes of the485

possible steps are all powers of two, and thus the EM algorithm can still be implemented efficiently.486

4.2. Multi-locus HMM-step handler. A different approach to reduce the effective number of loci is by combining neighboring487

loci within a window into “meta”-loci. To this end, assume that a window-size b ∈ N is given, and define the set of “meta”-loci488

as L ? := {0, . . . , b(L− 1)/bc}. Mathematically, this approach is equivalent to restricting the hidden states at all loci in the set489

{(l? · b) + 1, . . . , (l? · b) + b} to be identical, and setting the recombination rates between (l? · b) + b and ((l? + 1) · b) + 1 to b · ρ,490

for each l? ∈ L ?.491

Combining the loci can be implemented as follows. Define modified forward probabilities F ?l?(s) for all l? ∈ L ?, and compute492

them according to (49), with modified transition φ? and emission ξ? probabilities. The transition probabilities φ? are essentially493

given by definition (41), only a recombination rate of b · ρ has to be used instead of ρ. At a given locus l? ∈ L ?, for a given494

hidden state s = (i, ω, x), the “allele” of the additional haplotype is h[(l? · b) + 1 : (l? · b) + b] and the “allele” of the trunk495

haplotype is x[(l? · b) + 1 : (l? · b) + b]. Thus, the emission probability at locus l? is given by496

ξ?
(
h[(l? · b) + 1 : (l? · b) + b]

∣∣i, ω, x[(l? · b) + 1 : (l? · b) + b]
)

=
∏

l∈{(l?·b)+1,...,(l?·b)+b}

ξ
(
h[l]
∣∣i, ω, x[l]

)
. [86]497

The initial probabilities ν remain unchanged. The modified backward probabilities B?l?(s) and the EM algorithm can be498

adjusted accordingly.499
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5. Migrating trunk500

The unchanging trunk previously described has some drawbacks (also mentioned in the main text). In particular, under the501

true coalescent, a trunk lineage may absorb with the additional lineage in a sub-population different from the one it resides502

in at present, due to migration of the trunk lineage. Furthermore, going backwards in time, the rate of absorption of the503

additional lineage decreases, due to coalescence events within the trunk.504

To mitigate these drawbacks, we modify the approximate CSD. Under the model outlined in Section 1, a hidden state505

s = (i, ω, x) ∈ S represents the event that the additional lineage is absorbed during interval Ii, in sub-population ω ∈ Γi, into506

the trunk-lineage x. In the modified model, a hidden state s† = (i, ω†, x) ∈ E × Γ× nω† represents the event that during the507

interval Ii the lineage of the additional haplotype absorbs into the lineage of the haplotype x that resides in ω† at the present.508

Now, approximate the genealogy relating the haplotypes in the trunk under the true model as follows. First, recall that the509

number of absorbing lineages in the trunk determines the absorption rates in definition (4), and they were assumed constant510

for each sub-population in Section 1. Under the coalescent with migration, these numbers are given by a stochastic process, the511

ancestral process, that evolves due to coalescence and migration events. Using the full stochastic process is prohibitive, however,512

Jewett and Rosenberg (11) showed that often times its expected value can be used instead without much loss in accuracy. To513

this end consider a given epoch ε ∈ E , with Iε = [tε−1, tε). The expected number of trunk lineages in each sub-population514 {
n

(ε)
γ (tε−1)

}
γ∈Γε

at the beginning of epoch ε are given by {nγ}γ∈Γ, if ε = 1, and515 { ∑
δ∈Γε−1
δ⊂γ

n
(ε−1)
δ (tε−1)

}
γ∈Γε

[87]516

otherwise. The dynamics of the expected number of lineages during epoch ε can be approximated by the system of differential517

equations518

d

dt
n(ε)
γ (t) = − 1

κ
(ε)
γ

(
n

(ε)
γ (t)
2

)
1{n(ε)

γ (t)>1} +
|Γε|∑
δ=1
δ 6=γ

(
m

(ε)
δ,γn

(ε)
δ (t)−m(ε)

γ,δn
(ε)
γ (t)

)
, [88]519

for γ ∈ Γε, c.f. (11, Equation 26). The additional indicator function in the first summand balances out the fact that a term520

involving the variance is missing in this approximation. For each epoch ε ∈ E , these differential equations can be solved521

numerically. Then, replace nγ by 1
2

(
n

(ε)
γ (tε−1) + n

(ε)
γ (tε)

)
for each γ ∈ Γε in (4), and compute ũ, ỹ, z̃, and ξ̃ using these522

modified absorption matrices in (29), (42), (43), and (47), respectively.523

To approximate the effect of the migration dynamics in the trunk on the absorption dynamics of the lineage of the additional524

haplotype, define p(ε)(γ, δ) as the probability that a lineage residing in sub-population γ at present resides in sub-population δ525

at the beginning of epoch ε. Here γ ∈ Γ and δ ∈ Γε. Further, let q(ε)(γ, δ) be the corresponding probability at the end of the526

epoch. If ε = 1, then p(ε)(γ, δ) = δγ,δ. If ε > 1, then527

p(ε)(γ, δ) =
∑

ζ∈Γε−1
ζ⊂δ

q(ε−1)(γ, ζ) [89]528

holds. Furthermore,529

q(ε)(γ, δ) =
∑
µ∈Γε

p(ε)(γ, µ)

{(
e(tε−tε−1)Mε

)
µ,δ
, if Iε 6= ∅,(

Yε
)
µ,δ
, if Iε = ∅.

[90]530

Lastly, define the average of p(ε) and q(ε), weighted by the number of haplotypes in a certain sub-population, as531

r(ε)(γ, δ) := 1
2
(
p(ε)(γ, δ) + q(ε)(γ, δ)

)
· nγ , [91]532

and define533

r̃(ε)(γ, δ) = 1∑
µ∈Γ r

(ε)(µ, δ)
r(ε)(γ, δ) [92]534

as the fraction of lineages residing sub-population δ during epoch ε that reside in sub-population γ at present.535

Combining the quantities introduced in the previous paragraphs, define the modified initial probabilities as536

ν†(i, ω†, x) := 1
nω†

∑
γ∈Γi

r̃(i)(ω†, γ)ũ(i, γ)︸ ︷︷ ︸
=:ṽ(i,ω†)

,

[93]537

that is, the probability of being absorbed during epoch i into lineage x residing in sub-population ω† at present is given by538

considering the probability of being absorbed in a certain sub-population times the fraction of lineages in that sub-population539
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that are ancestral to lineages in sub-population ω† at present, and then summing this over all sub-populations. Along similar540

lines, define the modified transition probabilities541

φ†(i′, ψ†,x′|i, ω†, x)

= 1
ṽ(i, ω†)

(
δi′,iδψ†,ω†δx′,x

∑
γ∈Γi

r̃(i)(ω†, γ)ỹ(i, γ)ũ(i, γ)

+ 1
nψ†

∑
δ∈Γi′

∑
γ∈Γi

r̃(i′)(ψ†, δ)r̃(i)(ω†, γ)z̃(i′, δ|i, γ)ũ(i, γ)
)
.

[94]542

and the modified emission probabilities543

ξ†(a|i, ω†, t) = 1
ṽ(i, ω†)

∑
γ∈Γi

r̃(i)(ω†, γ)ξ̃(a|i, γ, t)ũ(i, γ). [95]544

These probabilities can then be used in appropriately modified versions of the forward, backward, and EM algorithm.545

6. Decoupling HMM discretization from demographic history546

We now describe how to employ a discretization for the HMM computations that differs from the partition induced by the547

demographic history. To this end, define a partition of the real line into intervals {Jj} :=
{

[tj−1, tj)
}
that is to be used to548

discretize the HMM. Note that, for convenience, we abuse the subscript notation for t slightly. The hidden states of our HMM549

are then (j, ω†, x), where j is an index of the discretization intervals {Jj}, and ω† and x are as before. We define a third550

partition551

{Kk} :=
⋃
{Iε}

⋃
{Jj}

{Iε ∩ Jj}. [96]552

Note that {Kk} is a refinement of {Iε} and {Jj}, that is for all k the inclusion Kk ⊂ Iε holds for some ε, and Kk ⊂ Jj for553

some j. In particular, note that the population sizes and migration rates are constant within each refined interval Kk. Thus we554

can work with the “refined” demographic history with epochs {Kk} instead of {Iε}. Specifically, associate with interval Kk the555

set of sub-populations Γk := Γε and a migration matrix Mk := Mε, with ε such that Kk ⊂ Iε. Assign Yk to the intervals of556

length zero accordingly.557

As in Section 5, compute ũ, ỹ, z̃, and ξ̃ according to (29), (42), (43), and (47), respectively, using the modified absorption558

rates and the discretization {Kk}. Also, define r̃(k)(γ, δ) accordingly, using this discretization in (92). Since {Kk} is a559

refinement of {Jj}, we can then use these quantities to compute the initial ν†, transition φ†, and emission ξ† probabilities for560

the discretization {Jj}, analogously to (93), (94), and (95). Specifically, replace r̃(j)(ω†, γ)ũ(j, γ) in (93) by561 ∑
k:Kk⊂Jj

r̃(k)(ω†, γ)ũ(k, γ). [97]562

In (95), replace r̃(j)(ω†, γ)ỹ(j, γ)ũ(j, γ) with563 ∑
k:Kk⊂Jj

r̃(k)(ω†, γ)ỹ(k, γ)ũ(k, γ), [98]564

and r̃(i′)(ψ†, δ)r̃(i)(ω†, γ)z̃(i′, δ|i, γ)ũ(i, γ) with565 ∑
k′:Kk′⊂Jj′

∑
k:Kk⊂Jj

r̃(k′)(ψ†, δ)r̃(k)(ω†, γ)z̃(k′, δ|k, γ)ũ(k, γ). [99]566

Lastly, replace r̃(j)(ω†, γ)ξ̃(a|j, γ, t)ũ(j, γ) in (95) by567 ∑
k:Kk⊂Jj

r̃(k)(ω†, γ)ξ̃(a|k, γ, t)ũ(k, γ). [100]568

Using these probabilities all computations for the HMM, and the algorithms based on them, can be computed using the569

discretization {Jj} independent of the partition {Iε} that is used for the demographic history.570
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Supplementary Figures571
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Accuracy results for the model with r = 0.25% per gen.
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Accuracy results for the model with r = 1% per gen.
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Fig. S1. Accuracy results of our method, diCal2, for the recent exponential growth model shown in Figure 1A of the main text with expansion rate r = 0.25%
and 1.0% per generation. Parameter estimates were obtained using only 10 haplotypes, which is much less than the sample size (thousands to tens of thousands) required
by SFS-based methods to get good estimates. Each violin plot shows the base-2 logarithm of the relative error (estimate/truth) for the analysis of 100 simulated datasets. Thus,
a value of 0 corresponds to an exact estimate, whereas +1 is a two-fold over- and−1 is a two-fold underestimate. True parameter values are shown on the x-axis.
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Results for the clean−split model with TDIV = 10k
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Fig. S2. Accuracy results for the clean-split model (no gene flow, m = 0) shown in Figure 1B of the main text with divergence time TDIV = 10 and 70 ka. Using
only two haplotypes in each extant population, the parameters of this clean-split model could be estimated very accurately.
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Fig. S3. Accuracy results for the isolation with migration (IM) model shown in Figure 1B of the main text with divergence time TDIV = 70 ka, and migration
probability m = 0.00025. As in the clean-split case, only two haplotypes in each extant population were used. Most parameter estimates show little bias or variability. See
the text for further discussion.
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Fig. S4. Goodness-of-fit evaluated using cross-coalescence rate curves. For each population pair, we estimated the Cross-coalescence rate curve from the SGDP data
(shown in black) and for datasets simulated under the estimated parameters (shown in red).
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Fig. S5. An example of a demographic history and a realization of the coalescent with recombination under this history. In this example, there are E = 8 epochs
and epoch 3 has length zero, so t2 = t3. The demographic structure is given by Γ1 = Γ2 = Γ3 = Γ4 = {{1}, {2}, {3}}, Γ5 = Γ6 = Γ7 = {{1}, {2, 3}}, and
Γ8 = {{1, 2, 3}}. All migration rates associated with all epochs but 3 are zero, except m(2)

2,3 = m
(2)
3,2 = m

(4)
2,3 = m

(4)
3,2 = m (and the rates on the diagonal accordingly).

The instantaneous migration probabilities associated with epoch 3 are all zero, but y(3)
2,1 ≥ 0. The bottleneck is implemented by setting κ(6)

γ6,1 < κ(5)
γ5,1 = κ(7)

γ7,1 .
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hx1 x2 x3 hx1 x2 x3

A B

Fig. S6. Two example realizations of the approximations to the true CSD. In these examples, the demography Θ describes an ancestral population that splits into two,
with subsequent gene flow. The already observed configuration consists of haplotypes x1 and x2 in the first population and x3 in the second. The additional haplotype h is
sampled in the second population. (A) πTΘ

(
h
∣∣2, {x1, x2, x3}

)
. The CSD πT· (·|·) approximates the true genealogy relating the observed haplotypes by an unchanging

trunk. The dotted, dashed, and solid lines represent the lineages at locus 1, 2, and 3, respectively. At the first locus, the marginal additional lineage undergoes a migration event
and is absorbed into the trunk-lineage of x1. A recombination event, indicated by the red cross, separates the lineages at locus 2 and 3. Thus, up to the time of the breakpoint,
the additional lineages are the same. At locus 3, it then undergoes migration independently and is absorbed at a different time into the trunk-lineage of x3. The alleles at each
locus are then propagated to the present accounting for possible mutations, indicated by the black arrow. (B) πDΘ

(
h
∣∣2, {x1, x2, x3}

)
. Under the approximation πD· (·|·), the

absorbing trunk-lineages at each locus are as before, however, only the intervals (indicated in red) that the absorption times falls into are recorded.
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Supplementary Table572

Table S1. Bootstrap results. The following table shows the parameter estimates and bootstrap results from the analysis of different pairs of
population from the SGDP data using the demographic model in Figure 3 of the main text. For each pair, the table provides the raw
estimates, 10 parametric bootstrap estimates (BS, and the bootstrap-corrected (Corr.) result. Times are in units of thousands of years,
effective population sizes are in thousands, and pulse amounts are in percentages.

Run Pop A Pop B TADM TDIV N0
A N0

B N1
A N1

B p N0
ANC N1

ANC

Corr. Aus. Fre. 16.86 106.27 >1000 563.95 2.09 3.06 24.99 1.39 21.89
Raw Aus. Fre. 9.70 85.84 233.20 102.43 1.72 2.68 17.91 2.46 25.47
BS 1 Aus. Fre. 5.62 69.49 22.78 17.36 1.41 2.35 12.55 4.37 29.69
BS 2 Aus. Fre. 5.57 69.94 13.76 19.39 1.41 2.36 12.38 4.44 29.68
BS 3 Aus. Fre. 5.47 69.91 12.84 20.18 1.45 2.33 12.27 4.30 29.67
BS 4 Aus. Fre. 5.37 69.23 11.80 16.03 1.41 2.34 12.21 4.37 29.51
BS 5 Aus. Fre. 5.77 68.75 11.95 23.22 1.40 2.30 12.57 4.40 29.67
BS 6 Aus. Fre. 5.86 68.44 10.29 18.18 1.40 2.33 12.95 4.42 29.53
BS 7 Aus. Fre. 5.72 69.76 12.43 19.47 1.43 2.36 12.70 4.29 29.61
BS 8 Aus. Fre. 5.53 68.64 12.56 18.12 1.42 2.32 12.40 4.36 29.64
BS 9 Aus. Fre. 5.40 69.87 9.36 18.38 1.42 2.35 12.33 4.29 29.70
BS 10 Aus. Fre. 5.49 69.33 12.60 16.67 1.43 2.33 12.70 4.36 29.65
Corr. Aus. Han 11.28 91.22 >1000 >1000 2.16 2.60 24.53 1.42 21.49
Raw Aus. Han 7.68 78.23 243.41 >1000 1.77 2.27 18.85 2.30 25.62
BS 1 Aus. Han 5.23 67.08 17.24 28.82 1.47 1.97 14.73 3.76 30.51
BS 2 Aus. Han 5.23 67.08 12.77 25.71 1.44 1.99 14.06 3.73 30.48
BS 3 Aus. Han 5.23 67.09 23.02 34.50 1.46 1.98 14.31 3.71 30.54
BS 4 Aus. Han 5.23 67.08 13.52 20.25 1.43 1.99 14.46 3.78 30.62
BS 5 Aus. Han 5.23 67.08 13.19 27.12 1.44 1.96 14.20 3.81 30.42
BS 6 Aus. Han 5.23 67.08 17.43 17.38 1.44 1.99 13.69 3.71 30.60
BS 7 Aus. Han 5.23 67.08 16.92 36.18 1.46 1.96 14.31 3.76 30.60
BS 8 Aus. Han 5.23 67.08 15.19 25.50 1.43 1.99 14.24 3.75 30.59
BS 9 Aus. Han 5.23 67.08 23.67 22.32 1.44 1.98 14.50 3.76 30.52
BS 10 Aus. Han 5.23 67.08 18.77 22.97 1.43 1.98 13.89 3.72 30.51
Corr. Aus. Pap. 5.30 33.92 37.95 52.91 4.33 2.24 15.35 2.20 20.59
Raw Aus. Pap. 5.75 29.80 72.40 44.36 2.73 1.71 16.76 2.47 24.76
BS 1 Aus. Pap. 6.37 26.45 130.25 40.28 1.72 1.30 18.96 2.76 29.82
BS 2 Aus. Pap. 6.33 25.90 54.63 35.07 1.71 1.33 18.06 2.76 29.93
BS 3 Aus. Pap. 6.08 25.93 97.99 23.10 1.73 1.32 17.69 2.76 29.66
BS 4 Aus. Pap. 6.21 26.36 139.03 30.50 1.70 1.32 17.88 2.77 29.81
BS 5 Aus. Pap. 6.06 25.93 89.78 38.19 1.74 1.30 18.07 2.76 29.80
BS 6 Aus. Pap. 6.36 26.21 139.22 51.78 1.74 1.30 18.22 2.76 29.69
BS 7 Aus. Pap. 6.40 26.39 123.46 35.35 1.74 1.29 18.31 2.76 29.73
BS 8 Aus. Pap. 6.40 26.42 224.18 51.22 1.74 1.31 19.06 2.77 29.92
BS 9 Aus. Pap. 6.08 26.16 158.78 38.44 1.69 1.31 17.97 2.78 29.74
BS 10 Aus. Pap. 6.07 26.15 474.40 36.94 1.76 1.32 18.50 2.77 29.76
Corr. Fre. Han 8.23 53.62 100.82 >1000 4.11 3.05 14.78 2.71 20.96
Raw Fre. Han 6.92 44.41 76.45 >1000 3.17 2.50 13.22 3.06 24.04
BS 1 Fre. Han 5.83 35.77 45.74 73.12 2.46 2.06 11.75 3.46 27.63
BS 2 Fre. Han 5.57 36.54 35.76 171.07 2.45 2.03 11.59 3.44 27.56
BS 3 Fre. Han 5.74 36.39 78.74 106.41 2.43 2.07 11.44 3.45 27.56
BS 4 Fre. Han 5.94 37.28 55.90 294.03 2.46 2.04 11.84 3.45 27.53
BS 5 Fre. Han 5.87 37.31 86.77 102.31 2.46 2.03 11.81 3.44 27.61
BS 6 Fre. Han 6.02 37.28 96.23 174.07 2.42 2.04 11.85 3.48 27.62
BS 7 Fre. Han 5.88 37.29 42.62 80.18 2.43 2.04 12.03 3.47 27.59
BS 8 Fre. Han 5.73 36.26 55.81 286.05 2.44 2.05 11.87 3.49 27.53
BS 9 Fre. Han 5.89 36.26 45.09 162.32 2.42 2.04 11.83 3.45 27.60
BS 10 Fre. Han 5.72 37.48 66.54 122.91 2.45 2.05 11.98 3.45 27.57
Corr. Fre. Pap. 20.79 106.04 439.57 927.98 3.24 1.79 23.49 0.74 22.17
Raw Fre. Pap. 12.69 93.29 103.86 102.28 2.76 1.59 16.54 1.98 26.18
BS 1 Fre. Pap. 7.87 83.50 23.27 10.30 2.35 1.43 11.47 5.35 31.00
BS 2 Fre. Pap. 7.51 81.93 18.94 10.18 2.35 1.43 11.25 5.35 30.91
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BS 3 Fre. Pap. 7.72 82.59 34.28 16.10 2.36 1.43 11.37 5.44 30.90
BS 4 Fre. Pap. 7.77 81.20 32.06 12.85 2.33 1.42 11.24 5.41 30.83
BS 5 Fre. Pap. 7.77 82.01 22.12 9.96 2.36 1.42 11.38 5.33 30.99
BS 6 Fre. Pap. 7.83 82.18 26.32 11.86 2.37 1.42 11.33 5.17 30.95
BS 7 Fre. Pap. 7.70 82.32 18.23 9.39 2.34 1.43 11.11 5.20 30.84
BS 8 Fre. Pap. 7.64 81.22 23.34 10.31 2.33 1.42 11.20 5.24 30.88
BS 9 Fre. Pap. 7.86 81.76 25.50 10.85 2.33 1.43 11.60 5.39 30.85
BS 10 Fre. Pap. 7.78 82.05 25.89 12.33 2.35 1.40 11.46 5.40 31.04
Corr. Han Pap. 18.59 112.60 >1000 747.50 2.84 1.82 26.33 0.92 22.03
Raw Han Pap. 10.54 87.92 >1000 92.26 2.35 1.59 17.54 2.05 26.35
BS 1 Han Pap. 6.19 69.01 31.79 12.33 1.93 1.39 11.44 4.55 31.38
BS 2 Han Pap. 6.01 69.60 28.05 10.94 1.96 1.37 11.21 4.58 31.60
BS 3 Han Pap. 5.85 69.16 20.66 10.21 1.94 1.39 11.40 4.50 31.48
BS 4 Han Pap. 6.19 67.98 34.17 14.18 1.95 1.37 11.72 4.56 31.58
BS 5 Han Pap. 5.85 68.67 29.81 9.62 1.95 1.39 11.11 4.56 31.42
BS 6 Han Pap. 5.86 67.35 27.81 12.71 1.93 1.41 10.84 4.57 31.43
BS 7 Han Pap. 5.65 69.30 28.02 10.01 1.93 1.41 10.49 4.47 31.47
BS 8 Han Pap. 6.08 68.24 53.42 10.90 1.92 1.38 11.54 4.67 31.69
BS 9 Han Pap. 6.01 68.07 45.32 11.34 1.93 1.40 11.10 4.57 31.42
BS 10 Han Pap. 6.10 69.15 33.54 12.41 1.96 1.37 11.50 4.56 31.57
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