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Abstract1

The Discrete-Time Wright-Fisher (DTWF) model and its diffusion limit are central to population genetics. These models can describe the
forward-in-time evolution of allele frequencies in a population resulting from genetic drift, mutation, and selection. Computing likelihoods
under the diffusion process is feasible, but the diffusion approximation breaks down for large samples or in the presence of strong selection.
Existing methods for computing likelihoods under the DTWF model do not scale to current exome sequencing sample sizes in the hundreds of
thousands. Here we present a scalable algorithm that approximates the DTWF model with provably bounded error. Our approach relies on
two key observations about the DTWF model. The first is that transition probabilities under the model are approximately sparse. The second
is that transition distributions for similar starting allele frequencies are extremely close as distributions. Together, these observations enable
approximate matrix-vector multiplication in linear (as opposed to the usual quadratic) time. We prove similar properties for Hypergeometric
distributions, enabling fast computation of likelihoods for subsamples of the population. We show theoretically and in practice that this
approximation is highly accurate and can scale to population sizes in the tens of millions, paving the way for rigorous biobank-scale inference.
Finally, we use our results to estimate the impact of larger samples on estimating selection coefficients for loss-of-function variants. We find that
increasing sample sizes beyond existing large exome sequencing cohorts will provide essentially no additional information except for genes
with the most extreme fitness effects.
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Introduction1

The Discrete-Time Wright-Fisher (DTWF) model and its large popula-2

tion limit the Wright-Fisher diffusion (WF diffusion) are workhorses3

of population genetics (Gillespie 2004; Ewens 2004). These forward-4

in-time models describe the evolution of the frequency of an allele in a5

population, and can incorporate mutation, selection, and genetic drift.6

Beyond providing a useful conceptual framework, the DTWF model7

and the WF diffusion enable inference of evolutionary parameters8

from data. A notable example is the Poisson Random Field (PRF)9

model (Sawyer and Hartl 1992) which relates the distribution of allele10

frequencies at a single site to the probability of observing a given11

number of sites where an allele is at a particular frequency in the12

sample (the site frequency spectrum; SFS). The SFS can be estimated13

from sequencing data, and hence the PRF provides a probabilistic14

model relating evolutionary parameters to observable genetic data.15

Evolutionary parameters can then be inferred using standard techniques16

from statistical inference, such as maximum likelihood. This approach17

has been used to infer population sizes (Bhaskar et al. 2015), complex18

demographic models (Gutenkunst et al. 2009), and distributions of19

selection coefficients (Kim et al. 2017).20

Unfortunately it is difficult to compute the distribution of frequen-21

cies at a single site for models with natural selection under either the22

DTWF model or the WF diffusion. This distribution is one of the key23

ingredients of the PRF model. To illustrate these difficulties we will24

focus on the case of a single site with two potential alleles, A and a, in25

a panmictic monoecious haploid population. 26

Here, our overarching goal will be to compute the likelihood of 27

observing a particular allele frequency at present given various evolu- 28

tionary parameters such as past population sizes, mutation rates, and 29

selection coefficients. 30

The simplest approach to computing these likelihoods is a naive 31

forward-in-time application of the DTWF transition matrix. As we 32

describe in more detail below, the crux of this naive method is repeat- 33

edly multiplying a vector of probabilities by a DTWF transition matrix, 34

each of which require O(N2) time for a population of size N. Given 35

that for humans the present day effective population size may be in the 36

millions (or more) (Schiffels and Durbin 2014), this naive approach is 37

obviously not scalable. 38

To avoid the onerous O(N2) runtime, many approaches are based 39

on the idea that population sizes are usually quite large, and as such 40

one might consider a large population size limit of the DTWF model. 41

This limit assumes a fixed sample size n and then takes N to infinity, 42

although in practice this approach is used for all but the smallest 43

population sizes. The resulting continuum limit is the celebrated WF 44

diffusion (Ewens 2004). The WF diffusion is still a Markov process, but 45

instead of having a finite state space, the state space is the continuous 46

unit interval [0, 1] of allele frequencies. As such, the limiting process is 47

no longer a discrete time, discrete space Markov chain, but a continuous 48

time, continuous space Markov process whose evolution is described by 49

a stochastic differential equation. This stochastic differential equation 50

then allows one to write a partial differential equation (PDE) that 51
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2 Scaling the DTWF model

describes how the likelihood of observing different allele frequencies1

changes over time. Similar to the naive DTWF approach, one may solve2

this PDE at equilibrium at some time in the ancient past and then evolve3

the likelihoods forward in time to obtain the likelihoods at the present.4

The advantage of this approach is that whether the population has ten5

thousand individuals or ten million individuals the PDE is functionally6

the same. As a result, the runtime of computing likelihoods becomes7

independent of N. This approach has been extremely fruitful, resulting8

in numerical solutions (Evans et al. 2007; Gutenkunst et al. 2009; Koch9

and Novembre 2017) and spectral approaches (Song and Steinrücken10

2012; Steinrücken et al. 2013; Živković et al. 2015; Steinrücken et al.11

2016). Yet, numerically solving a PDE can be difficult and error-prone,12

and some methods have been found to return negative “probabilities”13

(Kamm et al. 2017).14

Another line of work takes a backward-in-time approach using ideas15

from Kingman’s Coalescent (Kingman 1982), resulting in likelihoods16

equivalent to those computed forward-in-time using the WF diffusion17

(Jansen and Kurt 2014) (but see (Bhaskar et al. 2015; Fu 2006) for18

coalescent approaches that are equivalent to the DTWF model). These19

backward-in-time approaches have the advantage of only scaling in20

terms of the sample size, n, as opposed to the population size, N.21

Usually, n ≪ N, and so this scaling can result in substantial com-22

putational speedups. For example, Polanski and Kimmel developed23

an approach to compute likelihoods under the coalescent for arbitrary24

past population size functions in O(n2) time (Polanski and Kimmel25

2003). A major downside of coalescent approaches is the difficulty of26

incorporating natural selection (Krone and Neuhauser 1997). One can27

in principle obtain a genealogical process in the presence of natural28

selection (Krone and Neuhauser 1997), but inference under this process29

is generally intractable.30

Under neutrality, results identical to the backward-in-time approach31

can be derived from a forward-in-time perspective by tracking the32

first n moments of the population frequency distribution, resulting in a33

system of n coupled ODEs (Evans et al. 2007). The approach in (Evans34

et al. 2007) can be extended to models with selection, but in that case,35

the system of ODEs is not “closed”. This means that the time derivative36

of the nth moment of the population frequency distribution requires37

knowing all of the moments up to and including the (n + 2)th moment38

for general models of selection, which in turn requires knowing the39

(n + 4)th moment and so on.40

Forward-in-time and backward-in-time methods each have advan-41

tages and disadvantages, and so a number of hybrid approaches have42

been developed. For example, momi (Kamm et al. 2017, 2020) uses43

the fact that the genealogies of the backward-in-time coalescent can44

be embedded in a forward-in-time Moran model. momi can model45

complex demographies, but cannot model selection. A similar trick is46

used in moments (Jouganous et al. 2017), but moments can model47

natural selection while remaining a good approximation to the WF48

diffusion.49

While the WF diffusion and coalescent can enable more efficient50

inference, they are only accurate for sufficiently common alleles. This51

inaccuracy has been noted several times, usually in the context of the52

coalescent, but the coalescent and WF diffusion are dual processes, so53

these inaccuracies also apply to the WF diffusion. There begin to be54

notable discrepancies between the DTWF model and the WF diffusion55

when the sample size, n, is larger than roughly the square root of the56

population size,
√

N (Fu 2006; Bhaskar et al. 2014; Krukov and Gravel57

2021; Melfi and Viswanath 2018a; Wakeley and Takahashi 2003).58

The diffusion limit also assumes that all relevant evolutionary pa-59

rameters such as mutation rates and strengths of selection scale like60

1/N in the limit (Ewens 2004). That is, if the selection coefficient is61

≫ 1/N, then the diffusion approximation breaks down (Krukov and62

Gravel 2021). 63

Most of the methods discussed above compute likelihoods under 64

processes equivalent to the WF diffusion, potentially suffering from 65

these problems. Bhaskar, Clark, and Song introduced a coalescent 66

approach dual to the DTWF model that scales like O(n3) but cannot 67

incorporate natural selection (Bhaskar et al. 2014). More recently, 68

Krukov and Gravel developed an approach that can model natural se- 69

lection using additional bookkeeping to accurately compute likelihoods 70

under the DTWF process (Krukov and Gravel 2021). Unfortunately, 71

this approach scales like O(n4). The distinction between the DTWF 72

process and the WF diffusion becomes apparent when n is larger than 73

O(
√

N). In this regime, a runtime of O(n4) implies a runtime of at 74

least O(N2), no better than the naive forward-in-time approach using 75

the DTWF transition matrix. 76

There has been much interest in determining the extent to which 77

natural selection acts against loss-of-function variants in each gene in 78

the human genome using massive exome sequencing datasets (Agarwal 79

et al. 2023; Cassa et al. 2017; Karczewski et al. 2020; LaPolice and 80

Huang 2021; Lek et al. 2016; Weghorn et al. 2019). This regime 81

— sample sizes in the hundreds of thousands, and extremely strong 82

selection — is exactly where differences between the DTWF model 83

and the diffusion become most pronounced, highlighting the need for 84

more computationally efficient methods. 85

Here we reconsider the naive approach of using the forward-in-time 86

DTWF process. While the most basic method of computing likelihoods 87

using the DTWF process costs O(N2) time, we show that transition 88

matrices under a broad class of DTWF processes can be replaced 89

by highly structured matrices enabling likelihood computations in 90

O(N) time, while having a provably small approximation error. We 91

obtain a similar speedup for Hypergeometric sampling that may be 92

of independent interest. We provide a high level description of our 93

method in the Overview of Approach Section, and we show empirically 94

that our approach is highly accurate and can scale to sample sizes in 95

the tens of millions in the Runtime and Accuracy Section. We use 96

our approach to explore the utility of using loss-of-function variants 97

to estimate selection coefficients in large samples in the Impact of 98

Mutation, Selection, and Demography on the DTWF Model Section. 99

We find that increasing sample sizes beyond current values will provide 100

little value for estimating the selection coefficients of most genes, 101

and will only prove useful for estimating extremely strong selection 102

coefficients. We discuss the limitations and future directions for our 103

approach in the Discussion. Formal proofs are deferred to the Appendix 104

(Appendix: Formal Theoretical Results and Proofs). We apply our 105

approach in an empirical Bayes framework to estimate the strength 106

of selection against loss-of-function variants using large-scale exome 107

sequencing data in a companion paper (Zeng et al. 2023). Software 108

with a python API implementing our approach is available at https: 109

//github.com/jeffspence/fastDTWF. 110

Overview of Approach 111

Throughout, we focus on a single locus with two alleles, A and a. Our 112

goal is to compute the likelihood of observing a given frequency of the 113

A allele at a particular locus in a sample from a population evolving 114

according to the DTWF model. We will use the notation vt to represent 115

a vector of these likelihoods at generation t. That is, entry i of vt is the 116

likelihood of observing exactly i copies of the A allele in the population 117

at generation t. Thus, if we say that the present is generation T, our 118

goal is to compute vT . All of the evolutionary forces present in a 119

general DTWF model are captured by the transition matrices, Mt. In 120

particular, Mt is affected by the population sizes in generations t and 121

t + 1, as well as the mutation rates and effects of selection. For general 122

non-equilibrium populations where these evolutionary parameters are 123
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Spence et al. 3

changing over time, a naive approach to computing these likelihoods1

involves three steps:2

1. We assume that at some point in the past the population was at3

equilibrium, and we compute v0, a vector with N + 1 entries,4

indexed from 0 to N, where entry i is the probability of observing5

i copies of the A allele in the population at equilibrium, with N6

being the population size.7

2. We evolve these probabilities forward according to the DTWF
transition matrix for each generation, until we reach the present.
That is, for generation t − 1, let Mt−1 be the DTWF transition
matrix. Then, (Mt−1)i,j is the probability of going from i copies
of the A allele in the population in generation t − 1 to j copies
of the A allele in generation t. To obtain the probability of each
allele frequency in the population at generation t we can compute

vt = M⊤
t−1vt−1,

where we use the ⊤ superscript to denote matrix transposition.
Say that we want to compute the likelihood at generation T. Then,
given v0, we can compute the population-level allele frequency
probabilities as

vT = M⊤
T−1 · · ·M⊤

0 v0.

3. The first two steps compute the probability of observing each
different possible allele frequency in the population, and so we
still must obtain the probability of observing each different pos-
sible allele frequency in a sample from the population. Let S be
a matrix where entry Si,j is the probability of seeing j A alleles
in a sample given that there are i A alleles in the population. We
may therefore obtain the probabilities of observing each possible
allele frequency in the sample, vsample as

vsample = S⊤vT .

Each of these steps is intractable using a naive approach because8

they rely on matrix-vector multiplication, requiring O(N2) time. Yet,9

if we were able to make matrix-vector multiplication much faster,10

then this approach suddenly becomes attractive — it is conceptually11

straightforward; easy to extend to incorporate selection and changes in12

mutation rates or population sizes; and numerically stable because all13

of the entries in all of the vectors and matrices are positive, avoiding14

the catastrophic cancellation that plagues some other approaches.15

Our approach is to replace the DTWF transition matrices Mt and16

the sampling matrix S with approximate versions, M̃t and S̃ that allow17

for matrix-vector multiplication in O(N) time, while guaranteeing that18

M̃t and S̃ are extremely “close” to Mt and S respectively.19

Our main results are about matrices where each row consists of the20

N + 1 entries of a probability mass function of a Binomial distribution21

with sample size N. We call this class of matrices Binomial transition22

matrices. While this class of matrices may seem esoteric, the transition23

matrices of many types of DTWF models are either themselves Bino-24

mial transition matrices or can be well-approximated using Binomial25

transition matrices. On an intuitive level, our results rely on the obser-26

vation that all of the “action” in a Binomial distribution happens on the27

scale of O(
√

N) in a way that we describe in more detail below.28

To obtain sampling probabilities, we generally consider sampling29

without replacement from the population. As we will describe below,30

this results in S being a matrix where each row is the probability31

mass function of a Hypergeometric distribution. The same properties32

of Binomial distributions that allow us to perform fast matrix-vector33

products are also true of Hypergeometric distributions. This allows us34

to use very similar tricks to quickly compute matrix-vector products 35

with the sampling matrix, S. 36

In contrast, if one obtains a sample via sampling with replacement, 37

then sampling can be represented as one additional generation of a 38

DTWF process, but with no mutation and no selection. One can 39

also model sampling with replacement where the sampling is biased 40

toward individuals with one allele or the other, in which case the 41

sampling process is equivalent to a single generation of the DTWF 42

model without mutation, but with a particular form of natural selection. 43

Such a situation might arise when sampling case/control data, where 44

cases are over-represented relative to their abundance in the population. 45

In this case, there would be a bias toward sampling disease-associated 46

alleles. More complicated sampling processes (e.g., sampling without 47

replacement, but biased toward one allele or another) may be possible to 48

treat using our techniques, but would require additional considerations 49

beyond those presented here. 50

Total Variation Distance and Matrix Norms 51

Our results about Binomial and Hypergeometric distributions are in
terms of total variation distance, an important metric on the space of
distributions. See (Gibbs and Su 2002) for a comprehensive overview
of metrics on the space of distributions, including total variation dis-
tance. For the discrete distributions taking values in 0, 1, 2, . . . , N that
we consider here, total variation distance is simply half the ℓ1 distance
between the probability mass functions. That is, for a distribution P
and a distribution Q, we write the total variation distance between
them, dTV(P, Q), as

dTV(P, Q) :=
1
2

N

∑
k=0

|P {X = k} − P {Y = k}|

where X is a P-distributed random variable and Y is a Q-distributed 52

random variable. 53

We present our results in terms of total variation distance because
it is very closely related to a particular matrix norm. The 1-operator
norm of a matrix, which we denote by ∥ · ∥1, is defined as

∥A∥1 := sup
x:∥x∥1

∥Ax∥1

for a matrix A, where ∥ · ∥1 applied to vectors is the usual ℓ1 norm (i.e., 54

the sum of the absolute values of the entries). Note that the 1-operator 55

norm is not the sum of the absolute values of the entries of the matrix. 56

In fact, the 1-operator norm is the maximum of the column-wise ℓ1 57

norms. The proof of this well-known result is included in an appendix 58

(Appendix: Proof of the Representation of the 1-operator Norm) for 59

completeness. 60

The reason we are interested in the 1-operator norm is because it 61

allows us to bound how much error we might introduce by replacing a 62

DTWF transition matrix by an approximation. In particular, if we have 63

a DTWF transition matrix M and we can construct an approximate 64

matrix M̃ such that ∥M⊤ − M̃⊤∥1 ≤ ε, then when we compute the 65

matrix-vector products required for computing likelihoods, we will 66

have that ∥M⊤v − M̃⊤v∥1 ≤ ε. Since the rows of a DTWF matrix 67

correspond to probability mass functions, we see that bounding an 68

approximation’s row-wise ℓ1 distance is equivalent to bounding the 69

total variation distance between the corresponding distributions up to a 70

factor of 2. 71

Binomial Transition Matrices are Approximately Sparse 72

The first key for our approach is straightforward: Binomial random
variables are very unlikely to be too far away from their means. A
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4 Scaling the DTWF model

Binomial random variable will be more than√
N
2

log
2
ε

away from its mean with probability less than ε. This is a celebrated1

result due to Hoeffding (Hoeffding 1963), and shows that with over-2

whelming probability, a Binomial random variable will be within a3

constant factor times
√

N of its mean. In turn, this implies that we4

can ignore all but O(
√

N) entries in each row of a Binomial transition5

matrix while only incurring a constant (in N) total variation distance.6

This property of Binomial distributions is illustrated in Figure 1A.7

This simple observation alone provides substantial savings in terms8

of memory and runtime for computing matrix-vector products, which9

has been noted previously (Krukov et al. 2016; Tataru et al. 2016),10

as we can simply take each row of a Binomial transition matrix, and11

replace all of the entries that are too far away from the corresponding12

mean of the row by zero. We can choose the point at which we13

begin setting entries to zero to obtain a given error tolerance, ε. To14

ensure that the resulting approximate matrix is still a valid stochastic15

matrix (i.e., the rows still sum to one and hence are valid probability16

distributions) we divide the remaining non-zero entries by their sum,17

which by construction perturbs them by a multiplicative factor no larger18

than 1/(1 − ε).19

As a concrete example, to capture all but 10−16 of the probability20

in a Binomial distribution, corresponding roughly to the limits of21

numerical precision, we can ignore all but ≈ 4.33
√

N entries on either22

side of the mean when computing matrix-vector products. This means23

that we can approximate the matrix as having only ≈ 8.66
√

N non-24

zero entries in each row, resulting in a theoretical speedup by a factor25

of
√

N/8.66. When N is 1000, this corresponds to a factor of ≈ 7.3×26

speedup over the naive approach. When N is 10 million, the speed up27

is ≈ 730×. This high degree of sparsity is visually apparent in the28

5000 × 5000 neutral DTWF transition matrix shown in Figure 1B.29

Binomial Transition Matrices are Approximately Low Rank30

The second key for our approach is more subtle, and relies on the31

fact that Binomial distributions with similar success probabilities have32

similar distributions in terms of total variation distance. This makes33

sense on an intuitive level — flipping N coins that come up heads34

with probability p should result in a similar distribution of outcomes to35

flipping N coins that come up heads with probability p + δ. What is36

less obvious is the length scale at which this occurs. That is, how large37

can δ be in terms of p and N while still keeping the total variation38

distance between the two distributions below a specified level, ε? The39

answer is cε

√
p(1 − p)/N for some constant cε that depends on ε40

but is independent of p and N. This scaling is visually apparent in41

the different colored points in Figure 1A, and we prove this result in42

Appendix: Formal Theoretical Results and Proofs.43

We now consider partitioning the unit interval [0, 1] into blocks such44

that for p and p′ in the same block, two Binomial distributions with size45

N and success probabilities p and p′ will have total variation distance46

less than ε. We show in Appendix: Formal Theoretical Results and47

Proofs that we can achieve such a partitioning of [0, 1] with O(
√

N)48

blocks.49

We can use this partitioning to approximate a Binomial transition50

matrix by an extremely low rank matrix, while bounding the ℓ1 error51

introduced to each row. For each separate block in the partition of52

[0, 1], we can pick a representative success probability. Since there are53

O(
√

N) blocks in this partition, we end up with O(
√

N) representa-54

tive success probabilities. Then, for each row of the Binomial transition55

matrix, we can consider its success probability, determine which block56

of the partition it is in, and replace that row by the probability mass57

function of the Binomial random variable with the corresponding repre- 58

sentative success probability. Because the original row and the new row 59

correspond to probability mass functions for Binomial distributions 60

that are close in total variation distance, the rows are close in ℓ1 dis- 61

tance. After replacing each row, the resulting matrix can have at most 62

O(
√

N) unique rows, meaning that for large N it is extremely low 63

rank. Additionally, since each row of the resulting matrix is still the 64

probability mass function of some Binomial distribution, the resulting 65

matrix is still a Binomial transition matrix. 66

While picking an arbitrary success probability for each block in 67

the partition of [0, 1] bounds the total variation distance, different 68

choices can results in different accuracies of the approximation over 69

repeated matrix-vector multiplications. For instance, if one were to 70

choose the smallest success probability within each block, then, for a 71

neutral DTWF transition matrix, the expected frequency in the next 72

generation would never be larger than the current frequency and would 73

often be slightly smaller. Over evolutionary time-scales this would 74

act similarly to negative selection, affecting the long-term accuracy. 75

Instead of choosing arbitrarily, we found that in practice a moment- 76

matching approach is extremely accurate. Briefly, when performing 77

matrix-vector multiplication with a non-negative vector v, for a given 78

block of the partition of [0, 1] we use the weighted average of the 79

success probabilities in M that fall within that block with weights 80

proportional to the corresponding entries of v. 81

Specifically, suppose that rows i, i + 1, . . . , j, with success prob-
abilities pi, pi+1, . . . , pj will all be represented by a single row with
success probability p̃k. If we assume that the success probabilities
are ordered, then setting p̃k to be any value between pi and pj will
bound the total variation distance, but some choices may result in worse
long-term accuracy. If we are approximating M⊤v for some v with
non-negative entries, then we set

p̃k =
∑

j
ℓ=i pℓvℓ

∑
j
ℓ=i vℓ

.

This choice guarantees that the expected frequency in the next gen- 82

eration of an allele with frequency in the current generation chosen 83

with probabilities proportional to v is matched between the true and 84

approximate processes. In the event that the denominator is exactly 0, 85

then the choice of p̃k does not matter as we will see in the next section. 86

An O(N) Algorithm for Approximately Computing Matrix- 87

vector Products for Binomial Transition Matrices 88

These two ingredients — that each row of a Binomial transition matrix 89

is close in ℓ1 distance to a row with only O(
√

N) non-zero entries, and 90

that each row of a Binomial transition matrix is close in ℓ1 distance 91

to the corresponding row of a Binomial transition matrix with only 92

O(
√

N) unique rows — are sufficient to derive a substantially faster 93

algorithm for approximately computing (transposed) matrix-vector 94

products. 95

The key idea is to replace the original Binomial transition matrix 96

M by an approximation M̃, which we construct by first choosing a 97

Binomial transition matrix with O(
√

N) unique rows that is close in 98

row-wise ℓ1 distance to M and then sparsifying each row of that matrix. 99

If we perform each of these steps so that they introduce a row-wise 100

ℓ1 distance of at most ε/2, the triangle inequality implies that the two 101

steps together introduce a total row-wise ℓ1 error of at most ε per row. 102

Once we have our approximate matrix, we can quickly perform 103

matrix-vector multiplications (Figure 2). The algorithm involves noting 104

that computing M̃⊤v can be thought of as first multiplying each row 105

of M̃ by the corresponding entry of v, and then summing up those 106

resulting vectors. That is, one first performs N + 1 scalar-vector 107

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyad168/7277051 by Stanford M

edical C
enter user on 20 Septem

ber 2023



Spence et al. 5

D
T
W
F

A
p
p
ro
xi
m
at
io
n

Transition
Matrices
R
elative
P

ro
b
ab

ility
P
ro
b
ab

ili
ty

Number
of
A
alleles
in
the
next
generation

10 8

10 6

10 4

10 2

100

A

B

Figure 1 A Probability mass functions for Binomial distributions across a range of values of N. Most of the mass is contained within O(
√

N)
of the mean, and distributions with success probabilities p within a small factor of 1/

√
N of each other are virtually indistinguishable. B The

transition matrix of the neutral DTWF process with N = 5000 as well as our approximation of that matrix represented as a heatmap. Rows are
normalized so that the maximum of each row is 1, and regions from the top left and middle are expanded. The results are nearly indistinguish-
able, except that there is very subtle horizontal banding near the middle of the transition matrix resulting from having nearby rows be copies of
each other.

multiplications, and then sums up the N + 1 resulting vectors. Our1

speedups come from two places.2

First, instead of multiplying each identical row by the correspond-3

ing entry of v and then summing, we can instead first sum up all of4

the entries of v that correspond to identical rows, and then multiply5

one representative row by this sum of the relevant entries of v. This6

observation means that after grouping the entries of v, we only need7

to perform O(
√

N) scalar-vector multiplications, and then sum up the8

O(
√

N) resulting vectors.9

Second, since each row of M̃ is sparse, we can ignore all of the10

zero entries when performing scalar-vector multiplication and vector11

addition. Our vectors only have O(
√

N) nonzero entries, making both12

of those operations cost O(
√

N) time. Overall, this means that we13

must perform O(
√

N) operations, each taking O(
√

N) time, resulting14

in a runtime of O(N). We give a visual depiction of our algorithm15

in Figure 2. Details and technical proofs are presented in Appendix:16

Formal Theoretical Results and Proofs.17

There are a few technical details and assumptions in achieving a18

truly O(N) runtime. First, we obviously cannot store or even look at19

each entry in M, because doing so would require O(N2) space and20

time. Instead we represent a Binomial transition matrix (or DTWF21

matrix) as simply the N + 1 success probabilities corresponding to each22

row. We can then represent M̃ by storing only the locations and values23

of the O(
√

N) entries for each of the O(
√

N) unique rows. Second,24

determining which representative row to use for each row of M can —25

in the worst case — require O(N log N) time; one can keep the break26

points of the partition of [0, 1] in an ordered list, and then for each row27

of M one must take its corresponding success probability and search28

through the sorted list of break points. This binary search requires29

O(log N) time for each row, resulting in a runtime of O(N log N).30

Instead, we assume that the rows of M are ordered in terms of success31

probabilities. In Appendix: Formal Theoretical Results and Proofs 32

we present a simple O(N) algorithm for assigning ordered success 33

probabilities to blocks of the partition. In the DTWF context, this 34

ordering corresponds to the case where the expected allele frequency 35

in the next generation is non-decreasing in the current allele frequency. 36

This assumption is biologically reasonable, and would only be violated 37

by something like extreme and unusual density-dependent selection. 38

Indeed, this assumption holds for standard models of haploid or diploid 39

selection and mutation. 40

Efficiently Obtaining the Likelihood of a Sample from Pop- 41

ulation Likelihoods 42

Using the algorithm in the previous section allows us to compute
population-level likelihoods. In general, we do not have access to
population-level data and must instead obtain a sample from the popu-
lation, which we assume is done uniformly at random without replace-
ment (i.e., simple random sampling). If we take a sample of size n, then
supposing that there are K copies of the A allele in the population, the
number of A alleles in the sample is Hypergeometric distributed with
parameters N, n, and K. Thus, to obtain the probability of observing
a given number of A alleles in the sample, we must take an average
of Hypergeometric distributions weighted by the probability of having
a given number of A alleles in the population. We can write this as a
matrix equation, using an (N + 1)× (n + 1) dimensional sampling
matrix S whose Kth row is the probability mass function of a Hyperge-
ometric random variable with parameters N, n, and K (assuming that
the rows are 0-indexed). If the probabilities of observing 0, 1, . . . , N
copies of the A allele are contained in the N + 1 dimensional vector
v, then we can obtain the vector, vsample of probabilities of observing
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+
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MT v

Figure 2 Schematic of fast matrix-vector multiplication algorithm. White regions of M̃⊤ correspond to zeros, colors correspond to columns of
M̃⊤ (i.e., rows of M̃) that are identical, and the corresponding entries of v. The algorithm proceeds by first combining entries of v that corre-
spond to identical rows of m, then multiplying the resulting scalars by the representative rows of M̃, using sparse scalar-vector multiplication.
The resulting sparse vectors are then summed using sparse vector addition.

0, 1, . . . , n copies of the A allele as

vsample = S⊤v.

Naively computing this matrix-vector product would take O(nN) time1

and space, which is prohibitive for large sample sizes.2

Somewhat surprisingly, if we assume that the sample size is not3

too large as a function of the population size — i.e., n ≤ αN for any4

fixed α < 1 as N grows, then the matrix S has properties very similar5

to a Binomial transition matrix despite having Hypergeometric rows6

instead of Binomial rows. On the one hand, the difference between7

the Hypergeometric distribution and the Binomial distribution is the8

same as sampling with and without replacement. Thus, for samples9

that are small, we might expect that it would be rare to sample the same10

individual twice when sampling with replacement, and so sampling11

with and without replacement should be similar. On the other hand,12

our results apply even as the sample size grows with the population13

size, and even for cases where, for example, we are sampling 99%14

of the population. In such cases, when sampling the same number of15

individuals, but with replacement we would almost certainly resample16

some individuals multiple times, and so it is surprising that sampling17

with and without replacement might have similar properties in this18

regime. Yet, as we show in Appendix: Formal Theoretical Results19

and Proofs, S⊤ is close in 1-operator norm to a highly structured20

matrix S̃⊤ such that S̃ has O(
√

n) unique rows and each row of S̃21

has O(
√

n) non-zero entries. The proof of this result relies on similar22

considerations as the Binomial case but applied to Hypergeometric23

distributions. Together, these two properties were all that was required24

to obtain our O(N) algorithm for (transposed) matrix-vector products,25

and so we may use exactly the same trick to compute S⊤v.26

As above, some care needs to be taken when choosing a row as a27

“representative” of a set of similar rows. In this case, we again use a28

moment matching approach, taking a mixture of two Hypergeometric29

distributions so that the expected value of an allele chosen uniformly30

at random with probabilities proportional to v is matched between the 31

approximate and real sampling matrices. 32

This completes our overview of our approach to approximately 33

computing likelihoods. By applying our algorithm to the DTWF tran- 34

sition matrix, we can efficiently compute the stationary distribution, 35

and integrate that distribution forward to the present, obtaining the 36

present-day population-level likelihood. Then, by applying essentially 37

the same algorithm to the sampling matrix, we can efficiently obtain 38

sample-level likelihoods. 39

Numerical Results 40

In this section we present numerical results about the runtime and 41

accuracy of our method as well as an application to how selection and 42

demography interact to affect the distribution of observed frequencies 43

in large sample sizes. These results have implications for how much 44

information we might hope to gain about selection coefficients as 45

sample sizes grow. 46

Before presenting the numerical results, we discuss some practical 47

implementation details. The theoretical accuracy guarantees of our 48

approach involve implicit constants. For example, we know that we 49

can choose a cε such that if we replace a row of the transition matrix 50

that corresponds to a Binomial with success probability p, with a row 51

that corresponds to a success probability of p + cε

√
p(1 − p)/N, 52

then we induce an ℓ1 error that is bounded by ε regardless of N or 53

p. Yet, our proof that such a constant exists is non-constructive (and 54

our proof is such that making it constructive would result in a much 55

smaller cε than necessary). As a result, we instead have the user specify 56

two hyperparameters, which together determine both the runtime and 57

accuracy. Regardless of their setting, our matrix-vector multiplication 58

runs in O(N) time, but the hyperparameters determine the size of the 59

constant hidden by the big-O notation, as well as the accuracy. The 60

first hyperparameter is the cε described above, which can alternatively 61
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Spence et al. 7

be described as how many standard deviations away two rows’ success1

probabilities can be before we will not allow one to be a copy of the2

other. Setting this value to be smaller results in a longer runtime, but3

higher accuracy. Unless otherwise specified, we set cε to be 0.1 for all4

analyses. The other hyperparameter, which we will denote by εsparse,5

determines how sparse to make the rows. Here our theoretical results do6

provide a constructive guarantee, so the user specifies a particular row-7

wise ℓ1 error tolerance, and the rows are only sparsified to a level that8

guarantees a smaller error. Again, setting εsparse to be smaller results9

in longer runtimes, but higher accuracy. Unless otherwise specified,10

we set this εsparse to be 10−8. We also use the same hyperparameters11

to specify the level of accuracy for the sampling matrix, S, but allow12

the user to set them to different values. Throughout, we always set cε13

for the sampling matrix to 0.05 and εsparse for the sampling matrix to14

10−8.15

Runtime and Accuracy16

To begin, we confirm the linear runtime of our matrix-vector multi-
plication algorithm and compare our implementation to the runtime
of the naive quadratic approach. Throughout this section we consider
the neutral case with bidirectional recurrent mutation, where we have
that the success probability, p( f ), for a given allele frequency in the
parental generation, f , is

p( f ) := µ0→1(1 − f ) + (1 − µ1→0) f

where µi→j is the probability of mutating from allele i to allele j. For17

the analyses in this section, we take µ0→1 = µ1→0 = 1.25 × 10−8.18

We compared the runtime of matrix-vector multiplication with the19

DTWF transition matrix for this process and a random vector, where20

each entry is independent and identically distributed Uniform(0, 1),21

and then normalized to sum to one. Compared to the O(N2) naive22

matrix-vector multiplication algorithm, our approximate algorithm has23

a more favorable O(N) scaling (Figure 3A). While big-O notation24

hides constant factors, we see that across population sizes (from N ≥25

1000) our approximate algorithm is faster than the naive algorithm.26

Indeed, at N = 1000, our approximate algorithm is slightly faster (6%27

speedup), while at N = 10,000,000, we predict that our algorithm28

would be about 215,000× faster, with the naive algorithm predicted to29

take over 75 days and our algorithm taking 31 seconds (we did not run30

the naive algorithm for N > 79,000 due to the prohibitive runtime).31

Similar results hold for matrix-vector multiplication using the sampling32

matrix (Figure 3B), where we obtain substantial speedups regardless33

of whether we sample 5% or 50% of the population.34

Having confirmed that our approximate matrix-vector multiplica-35

tion algorithm provides a substantial speedup, we turned to assessing36

its accuracy. We began by considering the accuracy of performing37

a single matrix-vector multiplication. That is, we considered the ℓ138

error between the result of the exact matrix-vector multiplication al-39

gorithm, and the approximate matrix-vector multiplication algorithm,40

∥M⊤v − M̃⊤v∥1. We used the same randomly generated v as we41

used for benchmarking the runtimes. Our theoretical results imply that42

even as N grows, our approximation should not get any worse. This43

theory is borne out empirically, where in fact we see that the error is44

small across all N, and the approximation actually appears to become45

more accurate as N gets large (Figure 3C).46

We see similar results for the sampling matrix (Figure 3D), where47

the error is slightly larger when sampling a larger fraction of the pop-48

ulation, but is low across all N and both of the sampling fractions49

considered. When the population size is small and we sample 50%50

of it, we see almost zero error. The reason for this is subtle, but by51

our construction of the approximate sampling matrix, S̃ if no more52

than two rows are combined into any single representative row, then53

our algorithm exactly recapitulates matrix-vector multiplication (up 54

to the error induced by sparsification). For these examples, we chose 55

the sparsification parameter, εsparse, to bound the ℓ1 error by 10−8, and 56

so in this regime, the error we see is ≤ 10−8. As the population size 57

increases, we begin combining more than two rows into any single 58

representative row, and consequently we incur errors on the order of 59

10−5. 60

The explanation for the increasing accuracy as N gets large is that 61

our theory applies for any v, and as such is a “worst-case” bound. 62

In contrast, our benchmarks use random v, and thus approximate an 63

average case. Intuitively, our approximation results in the mean of the 64

distribution corresponding to each row of the transition matrix being 65

off by a little bit, and our theory bounds how off any single row can 66

be. Yet, the mean of the distribution corresponding to some rows will 67

be slightly too large and for others it will be slightly too small. If v 68

has similar entries for a row whose mean is too large and a row whose 69

mean is too small, some of the resulting errors will cancel. When 70

v is random, as N gets large, more rows get grouped into a single 71

representative row, and so there are more chances for the rows with 72

means that are too large and too small to cancel each other out. As we 73

will show below, in realistic scenarios (i.e., computing likelihoods) our 74

algorithm is actually even more accurate than suggested by Figure 3. 75

This is because likelihoods tend to be very smooth across frequencies, 76

resulting in cancellation of errors. 77

Our theoretical guarantees only hold for a single matrix-vector mul- 78

tiplication. In theory, an approximation that is very good for a single 79

step can become essentially arbitrarily bad over multiple rounds of 80

matrix-vector multiplication. As such, we numerically explored the 81

long-term accuracy of our approximation by computing transition mass 82

functions (TMFs) — the probability of observing a given allele fre- 83

quency at a particular point in the future given some current frequency. 84

The TMF can be computed by repeatedly multiplying a vector with 85

all zeros except for a one at the entry corresponding to the present 86

day frequency with the single generation transition matrix. Our theory 87

guarantees that our fast matrix-vector multiplication algorithm will 88

result in a highly accurate approximation to the true TMF for a small 89

number of generations, but our theory cannot determine whether the 90

approximation gets worse over time. 91

To explore this, we considered a neutral model with bidirectional
mutation at a rate of 1.25 × 10−8, and a population size of 2000,
and computed transition mass functions for an initial frequency of
10%. To assess the accuracy of our approximation, we considered
both the total variation distance and the symmetrized Kullback-Leibler
(KL) divergence between the approximate and true TMFs. The KL
divergence between two probability mass functions p and q is

D(p∥q) := ∑
x

p(x) log
p(x)
q(x)

.

This divergence is asymmetric, so we consider the symmetrized ver- 92

sion D(p∥q) + D(q∥p). The KL divergence is zero if and only if 93

the two mass functions are identical, and small values indicate that 94

the distributions are “close” in an information theoretic sense. Very 95

roughly speaking, 1/D(p∥q) is approximately the number of inde- 96

pendent observations one would need in order to distinguish the two 97

distributions. The results are presented in Figure 4A, where we show 98

that even at long time scales, our approximation remains extremely 99

accurate. We show example transition mass functions for 10, 100, and 100

1000 generations in the future, where the approximation is visually 101

indistinguishable from the true transition mass function (Figure 4B). 102

Going even further, we can consider whether we are able to recover 103

the long-term equilibrium of the DTWF process using our approxima- 104

tion. To investigate this, we computed site frequency spectra (SFSs) 105
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Figure 3 Runtime and accuracy of approximate algorithm. A Runtime of the approximate and naive matrix-vector multiplication algorithms
for a DTWF transition matrix as a function of the population size, plotted on log-log scale. The naive algorithm scales quadratically, while the
approximate algorithm proposed here scales linearly. B Runtime of the approximate and naive matrix-vector multiplication for the sampling ma-
trix as a function of the population size, plotted on log-log scale. The runtime when the sample size is 50% of the population size is in blue, and
orange is the runtime when the sample size is 5% of the population size. In both A and B, runs that were expected to take more than 5 minutes
were not run. C The ℓ1 error of the vector resulting from our approximate matrix-vector multiplication algorithm, compared to the vector ob-
tained from exact matrix-vector multiplication for a DTWF transition matrix multiplied with a random vector. D Same as C, but for the sampling
matrix, when considering sampling either 50% (blue) or 5% (orange) of the population. In both C and D it is apparent that the ℓ1 error does not
grow (and in fact decreases) with increasing population size, consistent with our theoretical guarantees.

under the DTWF model. We define the SFS more precisely in Ap-1

pendix: Practical Considerations, but briefly, the SFS arises in the2

infinite sites mutation model, which approximates the case where each3

position in the genome has a very low mutation rate (and hence is4

very unlikely to be segregating) but there are many positions across5

the genome, so one still expects to find some segregating sites. In this6

regime, mutations can only happen once per site, and so it is possible7

to distinguish the ancestral allele from the derived allele. The SFS8

is then a vector where the ith entry is the number of positions in the9

genome at which there are i derived alleles, where i ranges between 110

and n − 1, inclusive, with n being the sample size. Here we consider11

the normalized SFS, where this vector is normalized to sum to 1, which12

can be interpreted as the distribution over the number of derived alleles13

at a randomly chosen segregating site. The normalized SFS is com-14

monly used for demographic inference and the inference of selection15

coefficients (Gutenkunst et al. 2009; Kim et al. 2017; Spence and Song16

2019).17

Computing the SFS requires finding the equilibrium of a particular18

system, and hence can be thought of as the limit of taking infinitely19

many matrix-vector products. As a result, our theory on the accuracy20

of our approximation does not apply, and so we explored the accuracy21

numerically.22

To compute equilibria using our approximation, we view all of the23

frequencies corresponding to a given representative success probability24

as a single “meta-state”. We then build the Markov transition matrix25

on these meta-states implied by our approximation to the DTWF pro-26

cess. Finding the equilibrium of the Markov chain on the meta-states27

involves solving a matrix equation with the O(
√

N)× O(
√

N) transi-28

tion matrix. The resulting meta-state equilibrium is then converted to29

an equilibrium in the original state space by multiplying the amount30

of mass in each meta-state by the (truncated) Binomial PMF with31

that meta-state’s corresponding representative success probability. See 32

Appendix: Practical Considerations for more details. 33

We compared the accuracy of our approximation to the commonly 34

used diffusion approximation (Bhaskar et al. 2015; Gutenkunst et al. 35

2009; Jouganous et al. 2017; Kamm et al. 2017), with the results pre- 36

sented for a range of selection coefficients and sample sizes, assuming a 37

constant population size of 2000 in Figure 4C. We restricted ourselves 38

to a population size of 2000 haploids so that we could exactly compute 39

the ground truth by finding the equilibrium of the full DTWF transition 40

matrix by solving a matrix equation. To compute the diffusion approx- 41

imation at equilibrium we used the results presented in (Bustamante 42

et al. 2001) and used as a baseline in (Krukov and Gravel 2021). 43

The diffusion approximation is expected to be good when the se- 44

lection coefficient is ≲ 1/N and the sample size is ≲
√

N (but see 45

(Melfi and Viswanath 2018b)). In this regime, we see that both our 46

approximation and the diffusion approximation accurately reconstruct 47

the true normalized SFS, but with our approximation being about 4× 48

more accurate in terms of total variation distance, and about 30× more 49

accurate in terms of symmetrized KL. Yet, the diffusion approximation 50

breaks down dramatically for large sample sizes or strong selection, 51

while our approximation remains faithful. Indeed, for a selection co- 52

efficient of 0.01, when n = 200, our approximation is 250× more 53

accurate than the diffusion approximation in terms of total variation, 54

and 4000× more accurate in terms of symmetrized KL. Similarly, 55

when n = N = 2000, even when the selection coefficient is zero, 56

our approximation is about 45× more accurate in terms of total vari- 57

ation, and 3800× more accurate in terms of symmetrized KL. Taken 58

together, we see that our approximation is highly accurate across the 59

full spectrum of sample sizes and selection coefficients. 60
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Figure 4 Accuracy over multiple matrix-vector multiplications. A Accuracy of the approximate algorithm for computing transition mass func-
tions (TMFs) for a starting allele frequency of 0.1 over multiple generations in terms of total variation distance (left axis label) or symmetrized
KL divergence (right axis label). B Example TMFs at 10, 100, and 1000 generations for an allele at an initial frequency of 0.1. The first row
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10 Scaling the DTWF model

Impact of Mutation, Selection, and Demography on the1

DTWF Model2

There has recently been growing interest in using the frequency of loss-3

of-function variants (LoFs) in large-scale exome sequencing projects4

to estimate measures of gene constraint (Agarwal et al. 2023; Cassa5

et al. 2017; Karczewski et al. 2020; LaPolice and Huang 2021; Lek6

et al. 2016; Weghorn et al. 2019). LoFs are variants such as early7

stop codons, splice-disrupting variants, or frameshifts, that result in8

the gene failing to make a viable protein. To a first approximation,9

all LoFs within a gene have roughly the same strength of selection10

acting against them, as they all have similar effects on the production of11

functional protein. As such, LoFs are attractive for studying selection12

as we can pool information across all LoFs within a gene to estimate a13

single LoF selection coefficient for that gene.14

Previous approaches have relied on deterministic approximations15

(Cassa et al. 2017), simulations (Agarwal et al. 2023; Weghorn et al.16

2019), or ad hoc methods and models (Karczewski et al. 2020; LaPo-17

lice and Huang 2021; Lek et al. 2016) to infer selection coefficients18

from LoF data. These approaches have yielded widely-used measures19

of gene constraint and important insights into the landscape of con-20

straint on human genes. Yet, without more principled computational21

machinery for computing likelihoods, it can be difficult to estimate the22

gains in power we might expect to see in different datasets. For exam-23

ple, how does increasing the sample size affect our power to estimate24

selection coefficients? How does demography affect power? Does25

sampling from a population that has experienced recent growth affect26

power? Are some types of variants more informative than others? In27

this section we use our machinery to answer these questions.28

To understand how sample size, mutation rate, and demography29

interact to affect power for estimating selection coefficients, we con-30

sidered a variety of each of these parameters. In particular, we con-31

sidered sample sizes ranging from n = 10 diploids to n = 300,00032

diploids, encompassing the range from small pilot studies in non-model33

organisms to biobank-scale datasets. To understand the impact of mu-34

tation rates and recurrent mutations, we considered a low mutation35

rate typical of transversions in humans (2.44 × 10−9 per generation)36

as well as a high mutation rate typical of methylated CpG sites in37

humans (1.25 × 10−7 per generation) (Karczewski et al. 2020). For38

demographies, we considered slight modifications of three demogra-39

phies estimated from data from the 1000 Genomes Project (Consortium40

et al. 2012) — one demography estimated using MSMC (Schiffels and41

Durbin 2014) from individuals labeled by the 1000 Genomes Project as42

“Utah residents with Northern and Western European ancestry” (CEU)43

and two estimated from individuals labeled as “Yoruba in Ibadan, Nig-44

era”, one inferred using MSMC (Schiffels and Durbin 2014), which we45

will refer to as simply the “YRI demography”, and one inferred using46

Relate (Speidel et al. 2019), which we will refer to as “YRI (Speidel)”.47

The CEU demography consists of a strong bottleneck corresponding to48

the out-of-Africa event, and recent explosive growth, whereas the YRI49

demography lacks a bottleneck and has remained roughly constant in50

size over time. The YRI (Speidel) demography lacks the deep bottle-51

neck of the CEU demography and has more explosive recent growth52

(Appendix Figure A1). See Appendix: Additional numerical results53

for more details.54

We used these different sets of mutation rates, sample sizes, and
demographies in a DTWF model. Specifically, following previous
work we focused on a diploid model of additive selection on LoFs
(Agarwal et al. 2023; Cassa et al. 2017; Weghorn et al. 2019), where
having one copy of the LoF variant results in a fitness reduction of shet,
while having two copies results in a fitness reduction of shom := 2shet
(but with fitness lower bounded by 0 in the event that shet > 0.5). Our
computational machinery was developed for haploid populations and

only tracks allele frequencies and not genotype frequencies. To approx-
imate the diploid model of selection we set the expected frequency in
the next generation, p( f ), as

p( f ) :=
(1 − shet) f̃

(
1 − f̃

)
+ (1 − shom) f̃ 2(

1 − f̃
)2

+ 2(1 − shet) f̃
(

1 − f̃
)
+ (1 − shom) f̃ 2

with
f̃ = f + µ(1 − f ),

where f is the frequency of the LoF in the current generation, so that f̃ 55

is the frequency following mutation at rate µ. Under strong selection, 56

frequencies will generally be low, so we ignore back-mutation. That is, 57

we assume that the mutation rate from the LoF allele to the non-LoF 58

allele is zero. This model matches the expected frequency change under 59

the diploid selection model assuming Hardy-Weinberg equilibrium 60

(Gillespie 2004). 61

Without back-mutation, if the population ever fixes for the LoF 62

allele, it will forever be stuck there. Yet, from any other frequency of 63

the LoF allele (including 0), it is always possible through mutation 64

or genetic drift for the LoF allele to fix (assuming shet < 1). This 65

implies that the equilibrium of this process is the degenerate state where 66

the population is fixed for the LoF mutation, which is obviously not 67

biologically realistic. One could instead turn to the commonly-used 68

infinite sites model, but this comes with two issues. 69

First, any particular site must be non-segregating with probability 70

one as the infinite sites model assumes an infinitesimally small per-site 71

mutation rate balanced by an infinitely large mutational target size. 72

This assumption may be realistic when considering mutations genome- 73

wide, but certainly breaks down when looking at single LoFs, or even 74

across LoFs within a single gene. 75

Second, since the mutation rate per site is infinitesimally small 76

under the infinite sites approximation, the probability of recurrent 77

mutation is also 0. Recurrent mutation in this context refers to the same 78

allele being generated at the same site more than once via independent 79

mutation events. For small sample sizes and small mutation rates, the 80

probability of independent mutations happening at the same site is 81

extremely small, explaining the popularity of the infinite sites model. 82

Yet, for the CpG mutation rate we know that recurrent mutations are 83

common and play an important role in shaping diversity (Harpak et al. 84

2016). 85

Instead of relying on the infinite sites approximation, our com- 86

putational machinery allows us to easily condition the evolutionary 87

dynamics of an allele at a single site on non-fixation. Essentially, when 88

a new LoF allele enters the population, we ignore any scenarios where 89

it drifts to fixation in the population. Looking backward in time, in a 90

finite population alleles must at some point in the past either have been 91

fixed or totally absent from the population. Since we are explicitly not 92

allowing the LoF allele to have been fixed at any point in the past, there 93

must have been some point in the past at which the LoF arose as a new 94

mutation in a population monomorphic for the non-LoF allele. In this 95

way, there is a well-defined notion of an ancestral allele and a derived 96

allele. The DTWF model conditioned on non-fixation is well-behaved 97

and has a non-trivial equilibrium. Additionally, it allows us to easily 98

model recurrent mutations and obtain a non-zero probability of an indi- 99

vidual site being segregating. See Appendix: Practical Considerations 100

for more details surrounding this subtlety. 101

Before investigating the impact of selection, we wanted to see if 102

modeling recurrent mutations was necessary for biobank-scale datasets 103

under our models. Recently, analytical results for recurrent mutations 104

in the coalescent (i.e., in the diffusion limit, and assuming neutrality) 105

have been developed (Wakeley et al. 2022). Here we also focus on the 106
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Spence et al. 11

neutral case for simplicity, and our results are qualitatively similar to1

those in (Wakeley et al. 2022). The approaches are complimentary:2

the results in (Wakeley et al. 2022) are analytic, while ours must3

be obtained numerically. For our machinery it is no more difficult4

to consider cases with various types of selection, whereas obtaining5

coalescent-based results in the presence of selection would be difficult.6

We considered something analogous to the SFS under our model7

— the probability of observing a given frequency of a derived allele8

conditioned on the site being segregating. We show the results for the9

CEU demography in Figure 5, where we see that for large sample sizes,10

recurrent mutations have a large effect on the frequency spectrum,11

with singletons being almost half as likely under the CpG mutation12

rate compared to the transversion mutation rate. This is somewhat13

counterintuitive — one might expect that under a high mutation rate14

there would be more rare variation, and that is true in absolute terms15

as there are more segregating sites, but given that a site is segregating,16

rare variants actually become less likely under higher mutation rates.17

Indeed, at a sample size of n = 300,000 diploids, the probability18

that a CpG is segregating is 0.678, while for transversions it is only19

0.022. At smaller sample sizes the impact of recurrent mutation is20

negligible for realistic mutation rates, with the probability that a site is21

segregating being 0.033 for CpGs and 0.0007 for transversions for a22

sample size of n = 100 diploids. The results for the MSMC-inferred23

YRI demography are qualitatively consistent (Figure A2), although24

some of our modeling choices result in an unusual and interesting non-25

convex frequency spectrum, which we discuss in detail in Appendix:26

Additional numerical results.27

We next turned to understanding the impact of mutation rates on28

using LoF frequencies to estimate shet. To this end, we computed the29

likelihood of observing each possible frequency (including 0) in a given30

sample for a range of values of shet ranging from well below the nearly31

neutral limit (shet = 10−6) all the way up to nearly lethal (shet ≈ 1).32

We show the results for the two mutation rates we considered for a33

sample of size 300,000 diploids from the CEU demography in Figure 6.34

The results show that rare variants are weakly indicative of strong35

selection, but otherwise observing an LoF of a given frequency acts36

as a soft threshold on shet. For example, a doubleton confidently37

rules out shet > 0.1, but is otherwise essentially equally consistent38

with any value of shet. Similarly, an LoF at 1% frequency rules out39

any shet > 0.002, but is otherwise relatively uninformative. The40

results are qualitatively similar across the two mutation rates, but41

very non-segregating CpGs provide much more evidence in favor of42

strong selection than non-segregating transversions, consistent with43

recent work by Agarwal and Przeworski showing empirically and via44

simulation that a non-segregating CpG at similar sample sizes is enough45

to confidently reject neutrality (Agarwal and Przeworski 2021).46

To more precisely quantify how informative different sample sizes,
datasets, or mutation rates are for estimating selection, we used the
Fisher Information, I . Fisher Information quantifies the expected cur-
vature of the likelihood function at a given value of shet and can be
thought of as an effective sample size multiplier in terms of number
of variants. In the DTWF model, information is additive across inde-
pendent sites, so a setting with twice the Fisher Information would
require half as many independent variants to achieve the same level
of accuracy, roughly speaking. More formally, the Cramer-Rao lower
bound from statistics shows that any unbiased estimator of shet must
have variance greater than 1/I . As such, the Fisher Information can
be thought of as being inversely related to the variance of the best
unbiased estimator of shet. In our setting, the Fisher Information is

defined as

I(s) :=
2n

∑
k=0

P {k LoF alleles in sample|shet = s}

×
(

d
dt

log P {k LoF alleles in sample|shet = t}
∣∣∣
t=s

)2

which we can compute using the likelihood curves shown in Figure 6 47

via numerical differentiation. Note that the Fisher Information depends 48

on the parameterization of shet, and here we compute the Fisher Infor- 49

mation for log10 shet to match the parameterization shown in Figure 6. 50

As a result, the Fisher Information can be thought of as being related 51

to how many orders of magnitude the uncertainty in shet should span. 52

We began by investigating the information content of CpGs and 53

transversions for estimating shet. For all of the demographies and all 54

sample sizes we find that the information content of a CpG is always 55

between 49× and 51.5× greater than that of a transversion. This makes 56

intuitive sense as the mutation rate is about 51.2× higher for CpGs, 57

indicating that we would expect CpGs to be segregating roughly 50× 58

as often as transversions. CpGs are usually slightly less than 51.2× as 59

informative as transversions across different values of shet, indicating 60

that there are some diminishing returns. 61

Next we turned to how information grows with sample size. Un- 62

like standard statistical settings, sampling additional individuals does 63

not provide completely independent information, and one might ex- 64

pect information to plateau as the sample size grows. Indeed, since 65

individuals share a common genealogy, as additional individuals are 66

added to a sample they are increasingly likely to be closely related 67

to someone already in the sample, and hence provide little additional 68

information. This is borne out in our results (Figure 7A), where we 69

see that increasing sample sizes provide diminishing returns in terms 70

of information. Yet, this effect is not uniform across the space of shet 71

values. Our results suggest that increasing sample sizes beyond the ap- 72

proximately 140,000 individuals in gnomAD (Karczewski et al. 2020) 73

only provides additional information for the most extremely selected 74

variants (shet > 0.02). This highlights that there is a fundamental limit 75

on how much we can hope to learn about the selective pressure on 76

genes from LoF data alone — at current sample sizes we have already 77

saturated the amount of information we might hope to obtain for a wide 78

range of selection coefficients. Further increases in sample sizes will 79

only help resolve the selection coefficients for the genes with the most 80

extreme effects on fitness. 81

Finally, existing exome sequencing cohorts consist primarily of 82

individuals that are genetically similar to the CEU individuals in the 83

1000 Genomes Project (Karczewski et al. 2020; Backman et al. 2021), 84

raising questions of whether we might be able to better estimate se- 85

lection by looking at samples of individuals who have experienced 86

different demographic histories. For example, is it more informative 87

to have a sample of a given size from a population that underwent the 88

CEU demography or a population that underwent one of the YRI de- 89

mographies? Interestingly, we find that the answer depends strongly on 90

shet and the sample size. For the smallest sample sizes (e.g., n < 100 91

diploids) samples from any of the demographies are comparably infor- 92

mative for selection coefficients above 0.001, but samples from either 93

YRI demography are almost twice as informative for selection coeffi- 94

cients below 0.001 (Figure 7B, C). The dominance of a sample from 95

the YRI demographies for low selection coefficients remains across 96

sample sizes, but as sample sizes increase, samples from the CEU 97

demography become increasingly more informative for large selection 98

coefficients relative to the MSMC-inferred YRI demography. For ex- 99

ample, at a sample size of n = 1,000 diploids, a sample from the CEU 100

demography is nearly twice as informative for an shet of 0.01, and for 101

a sample of size n = 300,000 a sample from the CEU demography is 102
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about 15 times as informative for an shet of 0.1. In contrast, the YRI1

(Speidel) demography results in more information than the CEU de-2

mography across almost all values of shet for sufficiently large sample3

sizes.4

The relative Fisher Informations for samples can be understood5

in terms of the properties of the demographies. Variants under weak6

selection are older, and due to the out-of-Africa bottleneck, those vari-7

ants will have experienced stronger drift under the CEU demography8

than the YRI demographies. Hence, samples from the CEU demogra-9

phy contain more “demographic noise” due to drift for such variants.10

Conversely, the recent explosion in population size in the CEU and11

YRI (Speidel) demographies results in the opposite phenomenon for12

strongly selected variants which likely arose more recently, resulting13

in more information for large values of shet. Finally, for small sample14

sizes there is little power to get at the rare, recent variants indicative of15

strong selection, regardless of demography, explaining why differences16

in information for large values of shet only manifest at large sizes.17

Discussion18

Here we presented an approach to approximate the transition matrix of19

the DTWF process that is provably accurate and allows us to compute20

likelihoods in O(N) time. We showed that our approach can scale to21

population sizes in the tens of millions, and is highly accurate. Our22

approach relied on two key observations: the transition matrix of the23

DTWF process is approximately sparse, with only O(
√

N) entries24

contributing appreciably to the mass in each row, and the matrix is25

approximately low rank, where the matrix can be replaced by one with26

only O(
√

N) unique rows while incurring a small error.27

We used our approach to understand how increasing sample sizes28

will help estimate the strength of selection acting against gene loss-of-29

function. We found that increasing sample sizes beyond those currently30

available will only provide additional information for the most strongly31

selected genes. For genes with anything weaker than the most extreme32

selection, current samples provide essentially as much information as33

can ever be obtained from LoF data from individuals closely related to34

the 1000 Genomes CEU sample.35

Our approach may seem similar to choosing a discretization scheme36

for the PDE that describes the WF diffusion, but the approaches are37

distinct. The PDE discretization approach starts with the DTWF model,38

passes to a continuum limit to obtain a PDE, and then discretizes39

that continuous process. Yet, the WF diffusion is only valid for fixed40

frequencies as N → ∞, indicating that in practice the continuous41

process is not a good approximation for frequencies close to 0 or 1. As42

such, any discretization of the WF diffusion must also be inaccurate43

near the boundaries. Instead, here we propose directly coarse graining44

the underlying discrete process without passing to a continuum limit.45

In some ways, our approach is reminiscent of the scaling approach46

used in simulations (Adrion et al. 2020). In forward-in-time simula-47

tions, it can be computationally onerous to simulate a large population.48

To avoid this, one chooses a scaling factor, such as 10, and simulates49

a population 10× smaller, but increases the mutation rates, recombi-50

nation rates, and strengths of selection by a factor of 10. Additionally,51

each generation in this scaled model counts for 10 generations in the52

unscaled model. This scaling is chosen so that the rescaled population53

converges to the same WF diffusion as the original process. Yet, this54

rescaling is only trustworthy for frequencies ≫ 1/N. Here, we do not55

rescale parameters, but we do group states into “meta-states”, and we56

group states more aggressively when the frequency is close to 0.5, and57

less aggressively for frequencies near 0 or 1. Whether a similar idea58

of frequency-adaptive rescaling could be incorporated into simulation59

to improve speed while remaining accurate is an interesting area for60

future research.61

Another view of our method is that we are replacing a difficult set of 62

transition distributions with a simpler set. This idea is very general and 63

different approaches could be taken. For example, it may be possible 64

to match the first several moments using only a very small number of 65

non-zero entries. Such extremely sparse transition matrices could result 66

in highly accurate and very computationally efficient approximations. 67

The approach presented here is just one possibility in this vein, and 68

exploring alternatives could be a fruitful direction for future research. 69

Our results are quite general, and can be readily extended to mul- 70

tiple alleles, multiple populations, or multiple loci. All of these can 71

be treated as processes defined by a transition matrix of sub-Gaussian 72

probability mass functions, and similar arguments to those used here 73

can be applied to show that such transition matrices have approximately 74

sparse rows, and are approximately low rank. These arguments should 75

result in comparable speedups, but unfortunately, this direct approach 76

of computing likelihoods using the forward transition matrix neces- 77

sarily comes with a steep computational cost in these settings. For 78

example, simply to list all of the possible configurations of a popula- 79

tion of N individuals at two biallelic loci requires O(N3) time (Kamm 80

et al. 2016). To list all of the possible configurations for 3 loci requires 81

O(N7) time, and in general k loci requires O(N(2k−1)) time. There 82

may be additional approximations that can be made in these cases, but 83

simply approximating the transition matrix as we do here will not be 84

enough to handle these more combinatorially difficult cases. 85

Throughout, we have assumed that the goal is to approximate the 86

underlying DTWF model while maintaining computational efficiency. 87

In general, however, no population will exactly follow any simple 88

DTWF model — in many populations there will be fine-scale geo- 89

graphic population structure (Diaz-Papkovich et al. 2019), assortative 90

mating (Yengo et al. 2018), overlapping generations, and so on. While 91

these complications may make the DTWF model seem overly sim- 92

plistic, the WF diffusion must be an even worse approximation as it 93

also implies unrealistic family size distributions for large sample sizes 94

(Melfi and Viswanath 2018b). In any case, our approach may also be 95

useful for more complex models (e.g., general Cannings’ exchangeable 96

models (Cannings 1974; Ewens 2004)), as long as transitions have the 97

two properties of being restricted (with high probability) to a small 98

subset of the state space, and transition probability mass functions for 99

nearby states being similar enough to be nearly indistinguishable. The 100

extent to which these two properties are true will determine the extent 101

of the speedup offered by our approach, and will depend on details of 102

the underlying model. For example, the forward-in-time models that 103

result in coalescents with multiple mergers (Pitman 1999; Eldon and 104

Wakeley 2006) or simultaneous multiple mergers (Mohle and Sagitov 105

2001; Spence et al. 2016) often correspond to “sweepstakes reproduc- 106

tion” where a single individual may spawn a sizable fraction of the 107

next generation. Under these models, a large sweepstakes reproduction 108

event could cause an allele to dramatically change frequency in a sin- 109

gle generation indicating the the transition density for any state is not 110

approximately sparse, and the approach used in this paper would not 111

result in a large speedup. 112

Here we focused on the problem of computing the likelihood of ob- 113

serving a given number of derived alleles at present, but our speedups 114

apply to time series data as well, which is frequently encountered in 115

ancient DNA. Several methods have been developed that treat the true 116

allele frequency at a given time as a hidden state in a hidden Markov 117

model (HMM). This frequency then evolves through time according to 118

the transition matrix of either the DTWF (Jewett et al. 2016), WF diffu- 119

sion (Steinrücken et al. 2014), or some other approximation (Mathieson 120

and Terhorst 2022), with sampled genotypes as the observations in the 121

HMM. These HMMs have been particularly useful in estimating the 122

strength of natural selection acting on individual loci, and our results 123
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14 Scaling the DTWF model

can be used in these methods to speed up computations while directly1

approximating the DTWF model.2

Our implementation is in pytorch (Paszke et al. 2019), which3

allows for backward mode automatic differentiation, enabling the com-4

putation of gradients of functions of the likelihood with respect to5

selection coefficients or mutation rates. Unfortunately, backward mode6

automatic differentiation requires storing the entire computation graph7

in memory. In our setting, this corresponds to storing representations8

of the approximate transition matrices at each generation, which may9

become memory intensive in models where the non-equilibrium por-10

tion spans many generations. Indeed, throughout this paper we resorted11

to using numerical approximations to the gradient to avoid these issues.12

Since our likelihood computation essentially just involves repeated13

matrix-vector multiplication, one may view it as a very deep neural14

network with linear activations, and backward mode automatic dif-15

ferentiation proves to be memory intensive in those applications as16

well (Gao et al. 2020). Our approach is also mathematically similar to17

using discretization to integrate a linear ODE forward in time, another18

application which essentially boils down to repeated matrix-vector19

multiplication. In that setting powerful methods have been developed20

which essentially solve the ODE forward to calculate the likelihood21

and then backward to obtain gradients, which avoids the need to store22

the computation graph in memory (Chen et al. 2018). Extending this23

approach to our setting is a promising approach to obtain gradients24

without resorting to numerical approximation. Yet, one of the most25

interesting parameters of the model, the population size, is necessarily26

discrete in the DTWF model, and hence is not differentiable. Ap-27

proximations such as the Straight-Through Estimator (Bengio et al.28

2013) could get around this, but their accuracy would require careful29

investigation.30

While our approach makes it feasible to accurately compute likeli-31

hoods under the DTWF model, the runtime can still be quite onerous.32

For example, computing the likelihood of observing all possible allele33

frequency for a single selection coefficient took ∼10 minutes for the34

demographies considered here. For application such as the inference35

of selection coefficients where there are a small number of parame-36

ters, practitioners can precompute likelihoods along a grid of values37

in parallel. Yet, for applications such as demographic inference with38

many parameters, this grid approach is infeasible and one would need39

to repeatedly compute likelihoods over the course of optimization.40

In such scenarios, a runtime of ∼10 minutes per likelihood could be41

prohibitive. Bayesian Optimization (Snoek et al. 2012) is tailored to op-42

timizing functions that are expensive to evaluate and versions that take43

advantage of parallelism (Snoek et al. 2012, Section 3.3) are promising44

candidates for using our approach for demographic inference.45

As modern datasets approach sample sizes of hundreds of thousands46

to millions, new scalable approaches are needed in population genetics.47

This onslaught of data is a blessing, but more work like this — devel-48

oping provably accurate, scalable approaches — is needed to keep up49

and allow us to extract useful insights from these ever growing sample50

sizes. Yet, care should be taken as our results show that larger sample51

sizes are not always helpful. For the problem of estimating selection52

coefficients, larger sample sizes will never provide less information,53

but for many genes they will not provide more information.54
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Appendix: Formal Theoretical Results and Proofs53

Notation54

Throughout we will use the notation BN,p for a Binomial distribution55

with sample size N and success probability p. We will also restrict our56

attention to what we define as ordered Binomial transition matrices,57

of which many DTWF models are special cases. We say that a matrix,58

M ∈ R(N1+1)×(N2+1) is a Binomial transition matrix if each row of59

M is the probability mass function of a Binomial distribution. That is,60

for each i the ith row of M is the probability mass function correspond- 61

ing to a BN2,pi distribution. Furthermore, we say that M is an ordered 62

Binomial transition matrix if it is a Binomial transition matrix with the 63

further property that the rows are ordered by success probability; that 64

is, p0 ≤ p1 ≤ · · · ≤ pN1 . 65

Construction of approximate transition matrix 66

The main goal of this section is to prove that we can accurately approx- 67

imate any Binomial transition matrix with a highly structured matrix 68

for which matrix-vector multiplication is much faster than standard. 69

The overall crux of this proof is twofold. 70

First, nearby rows in a Binomial transition matrix are close in total 71

variation distance, indicating that we can replace one row with a copy of 72

a nearby row while only incurring a small error. To prove this, we will 73

show that the total variation distance between BN,p and BN,p′ is small 74

so long as p and p′ are close in a particular sense. This will allows us 75

to partition the interval [0, 1] into O(
√

N) blocks such that for any p 76

and p′ in the same block the corresponding Binomial distributions are 77

guaranteed to be close in total variation distance. This in turn shows 78

that any Binomial transition matrix for a population of size N can be 79

replaced by a matrix with only O(
√

N) unique rows while controlling 80

the row-wise error. 81

Second, we will use a classical result to show that the tails of 82

the Binomial distribution are incredibly light — it is very unlikely to 83

sample a value far away from the mean of a Binomial distribution, 84

and in particular, one incurs only a small approximation error by only 85

considering the possibility of sampling something within O(
√

N) of 86

the mean. This will allow us to replace each row of the Binomial 87

transition matrix by a sparse vector with only O(
√

N) nonzero entries, 88

while only incurring a small approximation error. 89

To start showing that we can partition [0, 1] into O(
√

N) blocks 90

where Binomial distributions with success probabilities in the same 91

block have bounded total variation distance, we begin with the block 92

that includes 0. 93

Lemma 1. For any p ≤ 1 − (1 − ε)1/N ,

dTV(BN,0, BN,p) ≤ ε.

In particular, for fixed ε, p can be as large as O
(

1
N

)
while maintain- 94

ing a total variation distance to a Binomial distribution with success 95

probability 0 at most ε. 96

Proof. Let X ∼ BN,0 and Y ∼ BN,p. Note that X must be 0 with
probability 1, and cannot take any other value. The total variation is
then, by definition,

dTV(BN,0, BN,p) =
1
2

N

∑
k=0

|P {X = k} − {Y = k}|

=
1
2
(1 − P {Y = 0}) + 1

2

N

∑
k=1

P {Y = k}

=
1
2
(1 − P {Y = 0}) + 1

2
(1 − P {Y = 0})

= 1 − P {Y = 0}
= 1 − (1 − p)N .

This is obviously monotonically increasing in p, and solving for p we
obtain that

p = 1 −
(
1 − dTV(BN,0, BN,p)

)1/N ,

so to obtain a total variation distance at most ε we need

p ≤ 1 − (1 − ε)1/N .
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Finally, rewriting (1 − ε)1/N as exp
(

1
N log(1 − ε)

)
and using the

convergent series expansion, we see

1 − (1 − ε)1/N =
− log(1 − ε)

N
+ O

(
1

N2

)
.

1

The following lemma, stated in (Adell and Jodrá 2006) and proved2

in (Roos 2001) bounds the total variation distance between Binomial3

distributions with success probabilities away from 0 and 1.4

Lemma 2. (Adell and Jodrá 2006, Equations (2.15) and (2.16)) For
any p ∈ (0, 1) and any δ ∈ (0, 1 − p),

dTV(BN,p, BN,p+δ) ≤
√

e
2

τ(δ)

(1 − τ(δ))2 ,

where

τ(δ) := δ

√
N + 2

2p(1 − p)
.

For our purposes, we just need to know how far away p′ can be5

from p before incurring an unacceptable total variation distance, which6

we can obtain by loosening the above bound and rearranging.7

Lemma 3. For any p ∈ (0, 1/2), there exists a constant cε, that

depends on ε but not on p or N such that for any δ ∈ [0, cε

√
p
N ) we

have
dTV(BN,p, BN,p+δ) ≤ ε.

Proof. First, note that for any p ∈ (0, 1/2) and N ≥ 1 we have√
N + 2

2p(1 − p)
≤
√

3N
p

.

Letting x := δ
√

3N
p , we have by Lemma 2 that

dTV(BN,p, BN,p+δ) ≤
√

e
2

x
(1 − x)2 .

The right hand side is obviously monotonically increasing in x on [0, 1)8

from a value of 0 at x = 0 to infinity as x approaches 1. Furthermore,9

the equation does not contain p or N (except in the definition of x).10

Therefore, there exists a c′ε independent of p and N such that when11

x = c′ε the right hand side is ε, and hence for any x ≤ c′ε we have that12

dTV(BN,p, BN,p+δ) ≤ ε. Using our definition of x and solving for δ13

completes the proof.14

With these Lemmas in place, we can now prove our result on parti-15

tioning [0, 1] such that Binomial distributions with success probabilities16

in the same block have bounded total variation distance.17

Lemma 4. For fixed ε, there exist O(
√

N) breakpoints 0 = p0 <
p1 < p2 < · · · < pK = 1 such that for any p and p′ within in the
same interval (i.e., there exists an i such that p, p′ ∈ [pi, pi+1]) we
have

dTV(BN,p, BN,p′ ) ≤ ε.

Proof. Note that by symmetry, we only need to consider partition-
ing the space [0, 1/2] using O(

√
N) breakpoints. By Lemma 3 we

can control the total variation distance of all distributions between a
breakpoint pk and pk+1 by taking

pk+1 = cε

√
pk
N

+ pk. (1)

Therefore we have that the total variation distance is less than ε between 18

any Binomials of size N with success probabilities between pk and 19

pk+1. 20

Now, we will prove by induction that there exists a constant, αε,
that depends on ε but not on N, such that

pk ≥ αεk2

N
(2)

The base case of p1 is handled by Lemma 1. Now, suppose that Equa-
tion 2 holds for pk, then, by Equation 1 and the inductive hypothesis,

pk+1 ≥ kcε
√

αε

N
+

αεk2

N

=
αε(k + 1)2

N
+

(
cε
√

αε

N
− 2αε

N

)
k − αε

N

≥ αε(k + 1)2

N
,

where the last line follows by noting that k ≥ 1 and taking αε to be at 21

least as small as c2
ε /9. 22

This proves Equation 2. Then, to partition [0, 1/2] we can compute
breakpoints using the recursion in Equation 1 until we reach the first
breakpoint larger than 1/2. By Equation 2 we need at most⌈√

N
2αε

⌉

breakpoints, which is O(
√

N), to partition the space, completing the 23

proof. 24

25

We now turn to the task of showing that for a given Binomial dis- 26

tribution almost all of the mass is on outcomes within O(
√

N) of 27

the mean. This result follows straightforwardly from Hoeffding’s cele- 28

brated inequality (Hoeffding 1963), which we include for completeness 29

Lemma 5. (Hoeffding’s Inequality (Hoeffding 1963, Theorem 1)) Let
X ∼ BN,p, then for k ≤ Np,

P {X ≤ k} ≤ exp

(
−2N

(
p − k

N

)2
)

and for k ≥ Np,

P {X ≥ k} ≤ exp

(
−2N

(
p − k

N

)2
)

.

Lemma 6. Let

kmin(N, p, ε) =

⌊
Np −

√
N

√
− log ε

2
2

⌋

kmax(N, p, ε) =

⌈
Np +

√
N

√
− log ε

2
2

⌉

and define B̃ε
N,p as the distribution obtained by conditioning BN,p to

take values in

[max {kmin(N, p, ε) + 1, 0} , min {kmax(N, p, ε)− 1, N}].

Then,
dTV(B̃ε

N,p, BN,p) ≤ ε,

and the mass function for B̃ε
N,p contains only O(

√
N) non-zero entries. 30
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Proof. That the mass function of B̃ε
N,p contains only O(

√
N) non-zero

entries is obvious from its construction. To bound the total variation
distance, let X ∼ BN,p, and let Y ∼ B̃ε

N,p. By construction,

dTV(B̃ε
N,p, BN,p) =

1
2

P {X ≤ kmin}+
1
2

P {X ≥ kmax}

+
1
2

kmax−1

∑
k=kmin+1

P {Y = k} − P {X = k}

=
1
2

P {X ≤ kmin}+
1
2

P {X ≥ kmax}

+

1
P{kmin<X<kmax} − 1

2

kmax−1

∑
k=kmin+1

P {X = k}

=
1
2

P {X ≤ kmin}+
1
2

P {X ≥ kmax}

+
1 − P {kmin < X < kmax}

2
= P {X ≤ kmin}+ P {X ≥ kmax} ,

where we dropped the dependence of kmin and kmax on N, p, and ε for
notational convenience. Then, by Lemma 5,

P {X ≤ kmin} ≤ exp

(
−2N

(
p − kmin

N

)2
)

≤ ε

2

where the second line follows from our choice of kmin. An analogous
computation shows that

P {X ≥ kmax} ≤ ε

2
,

completing the proof.1

The following lemma will be used to show that as long as a Binomial2

transition matrix is ordered then we can assign the success probabilities3

for each of its rows to a set of blocks in linear time.4

Lemma 7. Consider 0 ≤ v1 ≤ v2 ≤ . . . ≤ vN ≤ 1, and a partition5

of the space [0, 1] defined by breakpoints 0 = p0 < p1 < . . . <6

pK−1 < pK = 1. We may compute index sets S1, . . . ,SK in O(N +K)7

time such that for all k for each i ∈ Sk we have that pk−1 ≤ vi ≤ pk,8

with S1 ∪ · · · ∪ SN = {1, . . . , N} and Si ∩ Sj = ∅ for all i ̸= j.9

Proof. We begin with v1 and we find the first k such that pk that is at10

least as large as v1. We may then search from v2 onward until we find11

the first j such that vj is larger than pk. If no such j exists, then set j12

to be N + 1. We assign 1, . . . , j − 1 to index set Sk. This is a valid13

assignment as we have pk−1 ≤ v1 ≤ . . . ≤ vj−1 ≤ pk. We may then14

repeat this process —we next find the first k2 such that pk2 is at least15

as large as vj, and we find the first j2 such that vj2 is larger than pk2 (or16

if such a j2 does not exist, set j2 to N + 1), assigning j, . . . , j2 − 1 to17

Sk2 . We can repeat this process until all of the v’s have been assigned18

to an index set. Since both the v’s and p’s are sorted we can do these19

searches starting where the previous search left off, and once we reach20

the end of both the v’s and the p’s we have assigned all of the v’s to21

an index set. Thus, we only have to consider each v and p O(1) times,22

resulting in a total runtime of O(N + K).23

Combining the previous lemmas, we can construct a highly struc-24

tured matrix that accurately approximates an ordered Binomial transi-25

tion matrix in O(N) time.26

Proposition 1. Let M ∈ R(N1+1)×(N2+1) be an ordered Binomial 27

transition matrix. We can build a representation of a matrix M̃ with 28

the following properties: 29

• M̃ has O(
√

N2) unique rows, 30

• Each row of M̃ has at most O(
√

N2) non-zero elements, 31

• ∥M⊤ − M̃⊤∥1 ≤ ε. 32

Furthermore, we can construct this representation in O(N1 + N2) time 33

and store it in O(N1 + N2) space. 34

Proof. Since M is an ordered Binomial transition matrix, each row is 35

a probability mass function of the form BN2,pi with non-decreasing pi. 36

By Lemma 4 we can partition the space [0, 1] into O(
√

N2) blocks 37

such that for any pi, pj in the same bucket the total variation distance 38

between the rows is ε/4. We can assign each of the Binomial probabil- 39

ity mass functions to these blocks in O(N1 +
√

N2) time by Lemma 7. 40

Each row of the matrix with an index in the same index set can then 41

be replaced by a Binomial probability mass function with an arbitrary 42

“representative” success probability contained in that block. Since each 43

row is getting replaced by a row corresponding to a distribution with 44

total variation distance less than ε/4, we have that the ℓ1 distance be- 45

tween each row is less than ε/2. Finally, by Lemma 6 we can replace 46

the distribution for each representative row, by an O(
√

N2) sparse 47

version while only incurring a further total variation distance of ε/4, 48

resulting in a further ℓ1 distance of ε/2. By the triangle inequality, each 49

final row is then at most ε away from the original row in ℓ1 distance. 50

Since there are only O(
√

N2) unique rows and each each of these 51

have only O(
√

N2) elements, once we have assigned rows to their rep- 52

resentative rows constructing this sparse representation only requires 53

O(N2) time, resulting in an overall runtime of O(N1 + N2). Repre- 54

senting M̃ requires O(N1 + N2) space, as storing the O(
√

N2) unique 55

rows, each with O(
√

N2) non-zero entries requires O(N2) space, and 56

then we must also store an index for each row in M̃ indicating which 57

representative row to use, requiring O(N1) space. 58

The requirement in Proposition 1 that the Binomial transition matrix 59

be ordered is so that we can determine which rows can be replaced 60

with which representative rows in linear time. In the absence of such 61

information (i.e., if the Binomial success probabilities for each row of 62

the matrix are arbitrary) then we need O(N log N) time to determine 63

the representative rows to use for each row. 64

The following lemma shows that matrix-vector products can be 65

made substantially faster for matrices with a limited number of unique 66

rows where each of those rows are sparse. 67

Lemma 8. Let M ∈ RN×P be a matrix with n unique rows, where 68

each row has at most s non-zero elements. Furthermore, suppose we 69

have index sets S1, . . . ,Sn, with S1 ∪ · · · ∪ Sn = {1, . . . , N} and 70

Si ∩ Sj = ∅ for all i ̸= j with the property that if rows k and ℓ are in 71

the same index set than those rows of M are identical. Then, for any 72

vector v ∈ RN the matrix-vector product M⊤v can be computed in 73

O(N + P + ns) time. 74

Proof. Let Mi be the ith row of M. For the desired matrix product we
need to compute

M⊤v =
N

∑
i=1

(Mi)
⊤ vi

Since the index sets cover all of the indices with no overlaps, we can
rewrite the above sum as:

M⊤v =
n

∑
k=1

∑
i∈Sk

(Mi)
⊤ vi.
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Spence et al. 19

Let i1, . . . , in be arbitrarily chosen elements from each of the n index
sets. Then, by noting that if i is in Sk, we have by assumption (Mi)

⊤ =(
Mik

)⊤, which allows us to pull the inner summation inward:

M⊤v =
n

∑
k=1

(
Mik

)⊤ ∑
i∈Sk

vi. (3)

The inner sum is now a sum of scalars, so for a particular k it costs1

O(|Sk|) to compute. To compute it across all k thus costs O(N) time.2

Then, since each Mik
only contains s non-zeros, we can multiply each3

by a scalar, and then sum up all n of them in O(ns + P) time. To see4

this, note that we can initialize a “running total” vector of P zeros, and5

then for each M⊤
ik

we only need to update the running total in the s6

entries at which Mik
is non-zero.7

Combining Proposition 1 and Lemma 8, we immediately arrive at8

our main result.9

Theorem 1. Let M ∈ R(N1+1)×(N2+1) be an ordered Binomial10

transition matrix. We can replace M by a matrix M̃ such that11

∥M⊤ − M̃⊤∥1 ≤ ε , and such that computing matrix vector prod-12

ucts of the form M̃⊤v requires O(N1 + N2) time.13

Proof. Each row of M is a probability mass function of the form14

BN2,pi with nondecreasing pi. By Proposition 1 we can approximate15

this matrix by a matrix with at most O(
√

N2) unique rows, each with at16

most O(
√

N2) non-zero entries, while maintaining ∥M⊤ − M̃⊤∥1 ≤17

ε, and we can construct a representation of this matrix in O(N1 + N2)18

time. By Lemma 8 we can perform matrix-vector multiplication with19

such a matrix in O(N1 + N2) time.20

We note that these results are all in terms of total variation distance.21

We prove results about how our approximation affects the first two22

moments of the transition distributions in Appendix: Convergence of23

Moments.24

Sample Likelihoods25

In this section, we discuss how to efficiently obtain the likelihood of
observing k A alleles in a sample of size n from the vector of prob-
abilities of observing different numbers of A alleles in a population
of size N. While this may seem like a substantially different prob-
lem, we show that similar considerations to speeding up matrix-vector
multiplication for Binomial transition matrices can be applied to this
subsampling problem as well. In particular, it is generally assumed that
the sample of size n is drawn without replacement from the population
of size N. Suppose that there are K A alleles in the population, then
the probability of drawing some number of A alleles in a sample of size
n is determined by the Hypergeometric distribution with parameters
N, K, and n, which we will denote in this section by HN,K,n. Since
we do not observe the frequency of the A allele in the population, we
should integrate over this latent variable. Thus, if vsample ∈ Rn+1

is the vector of sample probabilities, and v ∈ RN+1 is the vector of
population probabilities, then,

vsample = S⊤v

where S is a “sampling matrix” where the kth row is the probability26

mass function corresponding to the distribution HN,k,n.27

Surprisingly, our results about Binomial transition matrices also28

apply in modified forms to Hypergeometric sampling matrices. In29

particular, we show below that such matrices have rows that are approx-30

imately O(
√

n) sparse, and furthermore that such matrices are also31

close to matrices with O(
√

n) unique rows. These two tricks will allow32

us to compute sampling probabilities from population probabilities in 33

O(N) time. 34

To show that the rows of S are approximately sparse we again use 35

Hoeffding’s celebrated inequality. In his original paper, Hoeffding 36

shows that his bounds on the tails of Binomial distributions also hold 37

for Hypergeometric distributions (but phrased as sampling with and 38

without replacement) (Hoeffding 1963). We include the result below 39

for completeness. 40

Lemma 9. (Adapted from Hoeffding (1963, Theorem 4)) Let X ∼
HN,K,n, then for k ≤ nK/N,

P {X ≤ k} ≤ exp

(
−2n

(
K
N

− k
n

)2
)

and for k ≥ nK/N,

P {X ≥ k} ≤ exp

(
−2n

(
K
N

− k
n

)2
)

.

This lemma immediately implies an analogous sparsity result to 41

Lemma 6. As the proof is essentially identical to the proof of that 42

lemma we omit it. 43

Lemma 10. Let

kmin(N, K, n, ε) =

⌊
nK
N

−
√

n

√
− log ε

2
2

⌋

kmax(N, K, n, ε) =

⌈
nK
N

+
√

n

√
− log ε

2
2

⌉

and define H̃ε
N,K,n as the distribution obtained by conditioning HN,K,n

to take values between kmin + 1 and kmax − 1. Then,

dTV

(
H̃ε

N,K,n, HN,K,n

)
≤ ε,

and the mass function for H̃ε
N,K,n contains only O(

√
n) non-zero 44

entries. 45

We will also need a result analogous to Lemma 2, showing that 46

nearby Hypergeometric distributions are close in total variation dis- 47

tance. It turns out that the Hypergeometric case is slightly more delicate 48

than the Binomial case. Our results rely on the assumption that we are 49

not too close to sampling the entire population in that we will assume 50

that n ≤ αN for some α < 1, and we will consider the N → ∞ limit. 51

Note that this still encompasses cases where we sample say 99% of 52

the population, but rules out some pathological asymptotics such as 53

having n = N − N1−ε where the proportion of the population sampled 54

increases with the population size. 55

Before proving our general result about the total variation distance 56

between different Hypergeometric distributions, we first prove a “one- 57

step” inequality. 58

Lemma 11. Suppose that n ≤ αN for some α < 1. Furthermore,
suppose that K ≤ N/2. Then, for any N larger than some finite N0,

dTV (HN,K,n, HN,K+1,n) ≤ cα

√
n

KN
,

where cα is a universal constant that depends on α but is independent 59

of n, N, and K. 60
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20 Scaling the DTWF model

Proof. We start with the definition of total variation distance. Letting
pk be the probability that a random variable distributed as HN,K,n is k,
and letting qk be the analogous quantity for HN,K+1,n we have

dTV (HN,K,n, HN,K+1,n) =
1
2

n

∑
k=0

|pk − qk| .

It is difficult to directly bound this sum sufficiently tightly, so instead
we would like to convert it into an expectation by noting that

|pk − qk| = qk

∣∣∣∣ pk
qk

− 1
∣∣∣∣

but an issue arises in that in general HN,K,n and HN,K+1,n can each1

put zero mass on an event where the other does not (i.e., neither is2

absolutely continuous with respect to the other), making the above3

potentially ill-defined. In particular, qk is zero but pk is still positive4

when k = n + K − N.5

Fortunately, we can use Lemma 9 to show that these events do not
contribute substantially to the total variation distance. That is, if we
take

kmin := max

{
n

K
N

−
√

n log (KN/n)
2

, 0

}
,

we can show that kmin > n + K − N by noting that

kmin − (n + K − N) ≥ N − K − n + n
K
N

−
√

n log (KN/n)
2

= n
(

K
N

− 1
)
+ N − K −

√
n log (KN/n)

2

≥ α(K − N) + N − K −
√

N log N

= (1 − α)(N − K)−
√

N log N

≥ (1 − α)N
2

−
√

N log N

where we used that n ≤ αN and K ≤ N
2 by assumption. The√

N log N term is lower order than (1− α)N/2, so kmin − (n + K −
N) ≥ c′α N > 0 for some c′α > 0 so long as N is large enough. This
allows us to avoid the issue of dividing by zero, while only incurring
an o(

√
n/KN) error term on the total variation, by Lemma 9:

dTV (HN,K,n, HN,K+1,n) ≤ o
(√

n
KN

)
+

1
2

n

∑
k=kmin

qk

∣∣∣∣ pk
qk

− 1
∣∣∣∣ ,

where we abuse notation and define the summand to be zero when pk
and qk are both zero. Plugging in the values of pk and qk shows that
when qk is nonzero,

∣∣∣∣ pk
qk

− 1
∣∣∣∣ = ∣∣∣∣ k(N + 1)− n(K + 1)

(K + 1)(N − K − n + k)

∣∣∣∣
≤ 1

(K + 1)(N − K − n + kmin)
|k(N + 1)− n(K + 1)|

This allows us to bound the total variation distance in terms of an

expectation of a random variable X distributed as HN,K+1,n.

dTV
(

HN,K,n,HN,K+1,n
)

≤ o
(√

n
KN

)
+

∑n
k=kmin

qk |k(N + 1)− n(K + 1)|
2(K + 1)(N − K − n + kmin)

≤ o
(√

n
KN

)
+

∑n
k=0 qk |k(N + 1)− n(K + 1)|

2(K + 1)(N − K − n + kmin)

= o
(√

n
KN

)
+

E |X(N + 1)− n(K + 1)|
2(K + 1)(N − K − n + kmin)

≤ o
(√

n
KN

)
+

√
E
[
(X(N + 1)− n(K + 1))2

]
2(K + 1)(N − K − n + kmin)

where the final line follows from Jensen’s inequality. This expectation
only relies on the first two moments of a HN,K+1,n random variable,
and so may be readily, although tediously computed:

E

[(
X(N + 1)− n(K + 1)

)2
]

=
n(K + 1)
N(N − 1)

{
K
(

n(N + 3)− (N + 1)2
)

+ (N − 1)
(
(N + 1)2 − n(N + 2)

)}
≤ cnKN

for some universal constant c, where we naively bounded all appear-
ances of n and K in the curly braces by factors of N. Noting from
above that for N sufficiently large N − K − n + kmin ≥ c′α N for some
constant c′α independent of N, K, and n, results in the desired bound:

dTV (HN,K,n, HN,K+1,n) ≤ o
(√

n
KN

)
+

√
cnKN

2(K + 1)(N − K − n + kmin)

≤ cα

√
n

KN
.

6

It then becomes quite easy to combine this one-step lemma to obtain 7

something analogous to Lemma 3 but for Hypergeometric distributions. 8

Lemma 12. Suppose that n ≤ αN for some α < 1 and that
K ≤ N

2 . There exists a constant cα,ε that depends on α and ε
but not N, K, or n such that for any non-negative integer ℓ ≤
min

{
cα,ε

√
KN/n, N

2 − K
}

we have

dTV
(

HN,K,n, HN,K+ℓ,n
)
≤ ε.

Proof. Total variation distance is a metric, and hence by the triangle
inequality,

dTV
(

HN,K,n, HN,K+ℓ,n
)
≤

K+ℓ−1

∑
j=K

dTV

(
HN,j,n, HN,j+1,n

)

≤
K+ℓ−1

∑
j=K

cα

√
n

jN

≤ ℓcα

√
n

KN
≤ cα,εcα,
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where the second line followed from Lemma 11. Choosing cα,ε ≤ ε/cα1

completes the proof.2

We also need to consider where the first breakpoint can be.3

Lemma 13. Suppose that n ≤ αN. Then, for any K such that K/N ≤
(1 − α)

[
1 − (1 − ε)1/n

]
,

dTV (HN,0,n, HN,K,n) ≤ ε.

In particular, for fixed ε, K/N may be as large as O(1/n) while main-4

taining a total variation distance of at most ε to the HN,0,n distribution.5

Proof. If we let X ∼ HN,K,n, then, as in the proof of Lemma 1, the
total variation distance between the distributions can be written as

dTV (HN,0,n, HN,K,n) = 1 − P {X = 0} .

A quick calculation shows that

P {X = 0} =
(N − K)(N − K − 1) · · · (N − K − n + 1)

N(N − 1) · · · (N − n + 1)

≥
(

1 − K
N − n + 1

)n
.

Using that n ≤ αN, we obtain

P {X = 0} ≥
(

1 − K
(1 − α)N

)n
.

Therefore,

dTV (HN,0,n, HN,K,n) ≤ 1 −
(

1 − K
(1 − α)N

)n
.

Solving for K/N, one obtains that the total variation distance is
bounded by ε so long as

K/N ≤ (1 − α)
[
1 − (1 − ε)1/n

]
.

The term on the right hand side is the same, up to the factor of (1 −6

α) as in the Binomial case. Therefore it is O(1/n) following the7

asymptotic argument in Lemma 1.8

With Lemmas 12 and 13 in hand, we can prove a result analogous9

to Lemma 4 using similar techniques used in the proof of that result.10

Lemma 14. Suppose that n ≤ αN for some α < 1. For fixed ε, there
exist O(

√
n) breakpoints 0 = p0 < p1 < p2 < · · · < pM = 1 such

that for any K and K′ with K/N and K′/N being in the same block
(i.e., there exists an i such that K/N, K′/N ∈ [pi, pi+1]) we have

dTV (HN,K,n, HN,K′ ,n) ≤ ε.

Proof. The proof follows immediately from the proof of Lemma 4,11

by noting that we may replace Lemma 3 by Lemma 12 and we may12

replace Lemma 1 by Lemma 13.13

Combining these lemmas, we obtain our main approximation result14

for the sampling matrix.15

Proposition 2. Let S ∈ RN+1,n+1 be a Hypergeometric sampling16

matrix. We can build a representation of a matrix S̃ with the following17

properties:18

• S̃ has O(
√

n) unique rows,19

• Each row of S̃ has at most O(
√

n) non-zero elements,20

• ∥S⊤ − S̃⊤∥1 ≤ ε.21

Furthermore, we can construct this representation in O(N) time and 22

store it in O(N) space. 23

Proof. The result follows immediately from an argument analogous to 24

the proof of Proposition 1. 25

Finally, we note that this approximate matrix satisfies the prop- 26

erties of Lemma 8 allowing us to compute sample likelihoods from 27

population likelihoods in O(N) time. 28

Appendix: Proof of the Representation of the 1-operator 29

Norm 30

For completeness we include a proof that the 1-operator norm of a 31

matrix is the max of the ℓ1 norm across columns. This is a standard, 32

well-known result. 33

Proof. Consider an N × P matrix A. We will complete the proof in 34

two steps — first we will show that ∥A∥1 is at least as large as the 35

max of the ℓ1 norm across columns, then we will show that ∥A∥1 is 36

no larger than the max of the ℓ1 norm across columns. 37

Without loss of generality, assume that the first column of A has
the largest ℓ1 norm. Consider the vector e1, which has a 1 for its first
entry and zero for all other entries. Clearly ∥e1∥1 = 1, and so

∥A∥1 = sup
x:∥x∥1

∥Ax∥1

≥ ∥Ae1∥1

but ∥Ae1∥1 is just the ℓ1 norm of the first column of A which is the 38

column with the largest ℓ1 norm. 39

To prove the other direction, we will need to consider the columns
of A which we will write as A·,1, . . . , A·,P. We see that for any x with
∥x∥1 = 1,

∥Ax∥1 =

∥∥∥∥∥∥
P

∑
j=1

A·,jxj

∥∥∥∥∥∥
1

≤
P

∑
j=1

∥∥∥A·,jxj

∥∥∥
1

=
P

∑
j=1

|xj|
∥∥∥A·,j

∥∥∥
1

≤ max
k

∥∥A·,k
∥∥

1

P

∑
j=1

|xj|

= max
k

∥∥A·,k
∥∥

1

where the first inequality followed from the triangle inequality. 40

Appendix: Practical Considerations 41

In this section we will consider some practical aspects of using Bino- 42

mial transition matrices in the context of the DTWF model. First, in 43

Faster Repeated Matrix-vector Products, we will discuss a practical im- 44

plementation detail that allows for faster likelihood computations when 45

the underlying DTWF dynamics do not change too frequently. Then, 46

in Computing the Stationary Distribution, we discuss how to efficiently 47

compute equilibria under our model. We then discuss two aspects of 48

the DTWF model that are useful in practice — an infinite sites version 49

of the DTWF model to compute frequency spectra (Infinite sites), and 50

a version of the DTWF model conditioned on non-fixation, which is 51

similar in spirit to the infinite sites model, but is conceptually cleaner 52

when considering models with recurrent mutation (Conditioning on 53

non-fixation). 54
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22 Scaling the DTWF model

Faster Repeated Matrix-vector Products1

As discussed in the main text, we may need to repeatedly perform ma-
trix vector products to compute likelihoods under the DTWF model for
non-equilibrium populations. If the underlying dynamics of the DTWF
model do not change too frequently, then we can obtain substantial
computational savings by considering a “condensed” transition matrix
and then repeatedly squaring that condensed matrix. In particular, we

consider the case where we need to compute
(

M⊤
)k

v for large k. In
principle, we could use Theorem 1 to approximate this by k matrix-
vector products as M̃⊤ · · · M̃⊤v (evaluated right to left), which would
cost O(kN) time, but if k is large we can speed this up substantially.
One can view our fast multiplication algorithm for M̃⊤v, Equation 3,
as consisting of two steps. First we project v into a O(

√
N) dimen-

sional space by summing all of the entries of v that correspond to each
of the O(

√
N) unique rows of M̃, and then we multiply the resulting

vector by the transpose of a matrix where we only keep non-redundant
rows of M̃, which we will call

◦
M. If we were to repeat this process, we

would then project the vector M̃⊤v to the same O(
√

N) dimensional
space. If we write this projection operation as a matrix, Π, then

M̃⊤M̃⊤v =
◦

M
⊤

Π
◦

M
⊤

Πv.

In general,

(
M̃⊤

)k
v =

◦
M

⊤
(

Π
◦

M
⊤
)k−1

Πv,

and the trick is to note that(
Π

◦
M

⊤
)
∈ RO(

√
N)×O(

√
N)

is a square matrix. As a result, we can repeatedly square Π
◦

M
⊤

,2

with each squaring taking O(N3/2) time, allowing us to compute3

◦
M

k−1
in O(N3/2 log k) time. In principle this could be reduced sub-4

stantially using faster matrix-matrix multiplication algorithms such5

as Strassen’s algorithm (reduces runtime to ≈ O(N1.4037 log k))6

(Strassen 1969) or the Coppersmith-Winograd algorithm (reduces run-7

time to ≈ O(N1.188 log k)) (Coppersmith and Winograd 1987). Addi-8

tionally, one could diagonalize the transition matrix and then compute9

matrix powers, which would require O(N3/2 +
√

N log k) time. For10

simplicity and numerical stability we stick with the naive matrix-matrix11

multiplication algorithm, resulting in a runtime of O(N3/2 log k). If k12

is O(Nε+1/2) or larger then this provides a faster algorithm. Similar13

tricks have been used in population genetics in the context of coales-14

cent hidden Markov models (Paul and Song 2012; Steinrücken et al.15

2019; Terhorst et al. 2017).16

Computing the Stationary Distribution17

Since we compute likelihoods forward in time, we must assume that at
some point in the past the distribution of allele frequencies is known,
and then use the DTWF transition matrix to integrate that distribution
forward in time to the present. A natural choice is to assume that the
population was at equilibrium at some point in the past, and to then
compute the corresponding stationary distribution. By definition, when
the system is at equilibrium, it is unchanged by the dynamics of the
process, resulting in the following matrix equation:

M⊤veq = veq =⇒
(

M⊤ − I
)

veq = 0.

One could in principle solve this matrix equation (with the constraint18

that veq sum to one), but the naive strategy to obtain a solution costs19

O(N3) time. We might hope that by simply replacing M by our 20

approximation, M̃ we might be able to solve this equation faster. While 21

there are solvers that can take advantage of the sparsity of M̃ (Virtanen 22

et al. 2020), there are no solvers that can also take advantage of the 23

fact M̃ only has a small number of unique rows. Here we propose two 24

solutions, both of which rely on the ideas presented in Faster Repeated 25

Matrix-vector Products. 26

One solution is to solve for the equilibrium of the “condensed”
dynamics. In the notation of Faster Repeated Matrix-vector Products,
we solve for ◦veq in

Π
◦

M
⊤◦veq = ◦veq,

which requires O(N3/2) time. We then claim that
◦

M
⊤◦veq is an equi-

librium of M̃. To see this, note that

M̃⊤
(

◦
M

⊤◦veq

)
=

◦
M

⊤
Π

◦
M

⊤◦veq

=
◦

M
⊤◦veq

showing that
◦

M
⊤◦veq is invariant under the dynamics of M̃. 27

This approach requires a particular choice of representative success 28

probabilities when constructing
◦

M. In principle, we would like to 29

choose success probabilities using our moment matching approach, as 30

described in the main text, but that requires knowing the equilibrium 31

frequencies — exactly the object we wish to calculate. In practice, we 32

find that using an iterative method where we use some initial guess of 33

the equilibrium frequencies to construct
◦

M, solve the above equation to 34

obtain a new guess for the equilibrium frequencies, reconstruct
◦

M, and 35

so on, works well, resulting in errors on the order of machine precision 36

after two or three iterations. 37

An alternative approach is to use the power method, which essen-
tially approximates the equilibrium of a Markov chain by running the
dynamics for a long time. That is,

veq ≈
(

M̃⊤
)k

v

for any initial distribution, v, and taking k to be large. This is ex- 38

actly the setting of Faster Repeated Matrix-vector Products, and so we 39

may use those results to speed up this computation. In practice, we 40

can choose the initial v to be close to the true equilibrium by using 41

analytical solutions to the Wright-Fisher Diffusion. 42

Infinite sites 43

The mutation rate at any given position in the genome can be van- 44

ishingly small. For example, in humans the pre-modern effective 45

population size was on the order of 10,000 (Schiffels and Durbin 2014), 46

and per-base mutation rates are, on average, about 10−8 per generation 47

(Jónsson et al. 2017). Thus, one might expect to wait on the order of 48

tens of thousands of generations (or hundreds of thousands of years) 49

for a mutation to appear in the population at all. Furthermore, when 50

a mutation first arrives in the population it arrives on only a single 51

chromosome and as a result is likely to be quickly lost to drift. Under 52

neutrality, and ignoring recurrent mutation, the DTWF model is a mar- 53

tingale, which implies that the probability that a variant present is a 54

single haploid ultimately fixes is one over the total number of haploids 55

in the population. As a result, in order to get a mutation to fix at a site, it 56

will on average require a mutation arising at that site a number of times 57

equal to the population size. The waiting time between each of these 58

mutations is on the order of hundreds of thousands of years. Ultimately, 59

this means that at a single position, the timescale of equilibration is on 60
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the order of one over the mutation rate. In humans this would corre-1

spond to about a hundred million generations, or a few billion years.2

Given that life has only been present on Earth for about four billion3

years, and has clearly been rapidly changing, it seems implausible that4

any position in any genome could possibly be at equilibrium.5

The infinite sites approximation avoids this issue of time-scales6

by approximating the genome as being infinitely long, with each site7

having an infinitesimally small mutation rate. In this limit, there are8

infinitely many sites, but only finitely many of them have variants9

segregating at any time, and as such it does not make sense to consider10

the probability of a given site segregating, as for any single site that11

probability is zero. Yet, one can model how many sites are expected12

to be segregating, or the distribution of allele frequencies conditioned13

on a site being segregating. Throughout, we will say the frequency14

spectrum to refer to the expected number of sites that have variants at15

each frequency. In this approximation, mutations only happen at most16

once at a given site and as a result we can determine which allele is17

“ancestral” and which allele is “derived”, and we can ignore recurrent18

mutations. One way to view the frequency spectrum is as a vector, ϕ,19

where ϕ(k) is the expected number of sites at which k individuals have20

the derived allele. We only track the dynamics of segregating sites21

(because there are always infinitely many non-segregating sites), and22

as such, we ignore any derived alleles if and when they reach fixation,23

so ϕ is N − 1 dimensional.24

Let ϕt denote the frequency spectrum at generation t. Alleles al-
ready in the population evolve according to DTWF dynamics, and we
expect to “inject” θ/2 new singletons each generation, which we can
capture by adding (θ/2)e1 to the frequency spectrum each generation,
where e1 is the vector with 1 in the first position and zero in all other
positions. One can then either add the mutations first, which would
correspond to a model where mutation happens during gamete forma-
tion, and then the next generation is formed by sampling from those
mutated gametes:

ϕt+1 = M⊤
1:−1,1:−1

(
θ

2
e1 + ϕt

)
,

or one can consider a model where the next generation is formed first,
and then mutates prior to being genotyped:

ϕt+1 =
θ

2
e1 + M⊤

1:−1,1:−1ϕt,

where the subscripts on M indicate that we are dropping the first and25

last rows and columns of M (corresponding to the non-segregating26

states). In the diffusion limit, generations happen infinitely fast so these27

two models are equivalent, but in the DTWF model these two mutation28

models are subtly different. In particular, mutating after demographic29

sampling produces substantially more singletons in the population — it30

is possible to show that the equilibrium of the model with mutation after31

demographic sampling will have exactly θ/2 more singletons in the32

population than the model with mutation before demographic sampling.33

Since the number of singletons in the equilibrium DTWF model where34

mutation happens after demographic sampling is ≈ 1.12 × θ (Wakeley35

and Takahashi 2003), this results in a nearly factor of two difference36

between the models in terms of singletons. This difference is largely37

washed out in small subsamples of the population but becomes apparent38

as the sample size gets large. In humans there is some biological39

evidence for both of these models — siblings can share mutations40

that are not present in either parent, consistent with mutation in the41

parental germline, but there is also growing evidence that the first few42

replications after zygote formation are particularly error prone, which43

would be consistent with the second model (Gao et al. 2019, 2016;44

Sasani et al. 2019). Reality likely involves some combination of these45

models, indicating that the exact singleton count in large samples is not 46

reliable, as it depends on extremely fine-scale aspects of the underlying 47

model that are not currently well-understood. Yet, these details do not 48

appear at all in the Wright-Fisher diffusion, providing further evidence 49

that the diffusion stops providing a good approximation to reality as 50

the sample size gets large. 51

Note that in either formulation, since we are dropping the first and 52

last columns of M, we lose mass from ϕ each generation, correspond- 53

ing exactly to those variants that have either reached fixation or been 54

lost by drift. This loss of mass will at equilibrium be offset by the 55

influx of mass from the (θ/2)e1 term corresponding to new mutations. 56

Since the above formulation is written entirely in terms of matrix- 57

vector products, it is then easy to perform rapid approximate calcula- 58

tions using our tricks by simply replacing M with M̃. 59

Note that these formulations implicitly assume that the number 60

of sites where a new mutation arises each generation is deterministic. 61

A more realistic formulation would have a Poisson number of new 62

mutations — any given mutation is extremely unlikely, but there are 63

many potential mutations throughout the genome, and so a “law of rare 64

events” type argument gives the Poisson distribution. Yet, the variance 65

of the Poisson equals the mean, so the average distance between an 66

observation and the mean is about the square root of the mean. In our 67

setting, that means that if the expected number of mutations per genera- 68

tion is large, then the Poissonian noise about that mean is comparatively 69

small. For example, returning to the example of humans with an ef- 70

fective size of ≈10,000, a mutation rate of ≈10−8, and a genome size 71

of ≈109, we expect to see about 10,000 × 10−8 × 109 = 105 newly 72

mutated sites per generation. Meanwhile, we expect the fluctuations 73

in the number of mutations to be on the order of ≈1% of the expected 74

number of mutations, showing that this deterministic approximation is 75

quite accurate. 76

Conditioning on non-fixation 77

The infinite sites model has some conceptual downsides. For example, 78

methylated CpG sites have extremely high mutation rates (Jónsson 79

et al. 2017; Karczewski et al. 2020), making recurrent mutation an 80

empirically non-negligible force at realistic population sizes (Harpak 81

et al. 2016). Yet, the infinite sites model rules out recurrent mutation — 82

if the mutation rate is high enough for a given site to mutate twice, then 83

there must be infinitely many mutations in the genome. Furthermore, 84

the notion of an “ancestral” and “derived” allele becomes unclear in 85

the presence of recurrent mutation; if mutations can happen repeatedly 86

at a given site, then the derived allele could previously have gone to 87

fixation and the ancestral allele could be subsequently reintroduced. 88

A related conceptual issue is in the probability of a site being non- 89

segregating. Under the infinite sites model, any given site is non- 90

segregating with probability one, and the same holds for any finite 91

number of sites. This prevents the infinite sites model from using 92

the absence of mutations as an indication of natural selection, which 93

has proven to be a powerful technique for measuring gene constraint 94

(Lek et al. 2016; Karczewski et al. 2020). In particular, while models 95

based on the infinite sites assumption can implicitly make use of non- 96

segregating sites by tracking the total number of mutations, they run 97

into conceptual issues when, for example, defining the likelihood that 98

a single monomorphic site is experiencing a given level of selection. 99

An idea that is conceptually similar to the infinite sites model is to 100

allow arbitrary dynamics (e.g., recurrent mutation) but then condition 101

the derived allele on non-fixation. That is, the derived allele is allowed 102

to arise, perhaps even repeatedly at the same site, but we ignore situa- 103

tions in which that derived allele eventually fixes in the population. As 104

a result, if we look at any position in the genome under this model, that 105

position is either non-segregating with only the ancestral allele present, 106
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24 Scaling the DTWF model

or it is segregating, but we know that at some point in the past it was1

non-segregating and the population was fixed for the ancestral allele.2

By making this assumption, we may pick a particular allele as being3

the ancestral allele, and safely know that under this model, the last time4

the population was monomorphic at this site, it was monomorphic with5

the ancestral allele. Yet, by allowing non-infinitesimal mutation rates6

at each position, we can still derive a probability of segregating for7

each site, and we can incorporate recurrent mutation in a conceptually8

clean way.9

To incorporate conditioning on non-fixation, we can simply perform10

matrix-vector products as above, but we replace the final row of M̃11

(corresponding to the derived allele being fixed) with a row of zeros,12

and we replace the final column of M̃ (corresponding to transitioning13

to having the derived allele being fixed) with a column of zeros. This14

causes any mass that would have resulted in fixation being removed15

from the system. As a result, each transition, M̃⊤v, will result in a16

loss of mass corresponding to the allele trajectories that would have17

resulted in fixation of the derived allele. After each transition we can18

then renormalize v to sum to one. That this is correct follows from19

noting that we are eliminating all trajectories that result in fixation,20

and then rescaling all of the remaining probabilities by a constant (the21

probability of not reaching fixation).22

Appendix: Additional numerical results23

Here we include additional details, plots, and results related to Im-24

pact of Mutation, Selection, and Demography on the DTWF Model.25

Throughout Impact of Mutation, Selection, and Demography on the26

DTWF Model we used slightly modified versions of the demographic27

histories for the CEU and YRI samples from the 1000 Genomes Project28

(Consortium et al. 2012) inferred using MSMC (Schiffels and Durbin29

2014), as well as a demography for the YRI inferred using Relate (Spei-30

del et al. 2019). “YRI” will refer to the MSMC-inferred demography31

and “YRI (Speidel)” will refer to the Relate-inferred demography.32

First, we smoothed out some small fluctuations in sizes older than33

one hundred thousand years ago, and assumed that an extremely large34

population size estimated using YRI but not estimated using CEU35

was artifactual, opting to use a smaller ancestral size. Second, the36

present day YRI population size (36,822) is smaller than the largest37

sample sizes we wanted to consider, so we added a single generation38

of 500,000 individuals at present. Years were converted to generation39

times by dividing by 30 and rounding. The original, and modified40

demographies (ignoring the recent increase in YRI) are presented in41

Figure A1.42

Modifying the YRI demography this way results in an extreme43

scenario where many individuals must find a common ancestor one44

generation ago since a sample size of n = 300,000 is ≈10× larger45

than the population size in the previous generation. An interesting46

consequence of this is that under neutrality there can be many de novo47

mutations occurring in the most recent generation resulting in single-48

tons, but since the expected number of present day haplotypes that49

come from a particular parent in the previous generation is ≈10, vari-50

ants that are present in more than one but fewer than 10 individuals51

should be exceedingly rare. As a result, the frequency spectrum under52

this demography is non-convex: doubletons are rarer than both single-53

tons and tripletons, but more common than extremely high frequency54

variants (Figure A2). This highlights an advantage of our approach55

in that we can model such unusual frequency spectra whereas the fre-56

quency spectrum under the diffusion approximation must be convex for57

any population size history, a result of Sargsyan and Wakeley (2008).58

We note, however, that this particular result is driven by our simplistic59

modification of the YRI demography and unlikely to be a good match60

to actual frequency spectra obtained from large samples of individuals61

closely related to the YRI sample from the 1000 Genomes Project. Yet, 62

for small sample sizes, we see that the frequency spectra are largely un- 63

affected by this single generation of growth, and the frequency spectra 64

take on more familiar shapes. 65

To compute the Fisher Information in Impact of Mutation, Selection, 66

and Demography on the DTWF Model we used numerical differentia- 67

tion on linear interpolations of likelihoods. Specifically, we compute 68

likelihoods by linearly interpolating between precomputed grid points. 69

This method results in slight technical artifacts where the Fisher In- 70

formation is extremely high on one side of a grid point and extremely 71

low on the other side of the grid point with a discontinuity at the grid 72

point. This arises from linear interpolation being non-differentiable 73

at the grid points. To avoid these technical artifacts, we computed the 74

Fisher Information on a dense grid of points and then smoothed the re- 75

sulting values using gaussian_filter1d from scipy (Virtanen 76

et al. 2020) with a kernel chosen to visually smooth out the artifactual 77

fluctuations in the Fisher Information. 78

Appendix: Convergence of Moments 79

In this section we consider the moments of the DTWF process as 80

well as our approximation. While we showed in Appendix: Formal 81

Theoretical Results and Proofs that the processes are close in terms 82

of total variation distance, total variation distance can be either overly 83

strict or overly lax in some situations. This arises because total variation 84

is agnostic to any metric on the space of outcomes. Our approximation 85

produces a small difference in total variation distance, but there are 86

other approximations that also have small total variation distance, but 87

result in pathological behavior. For example, consider the process 88

obtained by flipping a coin that comes up heads with probability ε, and 89

if the coin is heads, then in the next generation the frequency of the A 90

allele is zero regardless of its current frequency. If the coin is tails, then 91

the next generation is obtained via the standard DTWF process. It is 92

easy to see that the transition density of this strange process has small 93

total variation distance to the transition density of the usual DTWF 94

process. Yet, this construction has totally outlandish behavior — if we 95

consider a DTWF model without recurrent mutation, and say that the 96

current allele frequency is 1, then under the true DTWF model, the 97

population will be forever stuck at a frequency of 1. On the other hand, 98

the strange construction will eventually (after about 1/ε generations on 99

average) crash to a frequency of 0. This example highlights that being 100

close in total variation is not necessarily sufficient for one process to be 101

a sensible approximation of the other. As such, the remainder of this 102

section will work toward showing that the mean and variance of the 103

transition density of our approximate process are close to the transition 104

density of the full DTWF process. 105

There are two pieces to our approximation — combining rows of 106

the transition matrix that correspond to Binomial distributions with 107

similar success probabilities, and sparsifiying the row — and both 108

affect the moments. 109

The effect of combining similar rows is straightforward to analyze. 110

Since the mean of a BN,p distribution is Np, and, assuming that p ≤ 111

1/2, we combine rows a row with success probability p with another 112

that differs by at most cε
√

p/N, we can see that this affects the mean 113

by O(
√

Np). In practice, we also choose our representative success 114

probabilities so that while some rows have their means increased by as 115

much as O(
√

Np), those are balanced by rows that have their means 116

decreased by a corresponding amount. As a result, if you pick a row 117

randomly (with probability proportional to the probability of observing 118

that frequency in the previous generation) the difference between its 119

approximate and true means is 0 on average. 120

Likewise, the variance of BN,p is Np(1 − p), which is also altered 121

by something that is O(
√

Np). In both cases, we see that the effect of 122
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Figure A1 The original (Schiffels and Durbin 2014) and modified demographies for CEU, YRI, and YRI (Speidel) considered in this paper.
Note that in the modified demography, YRI has an additional generation with a population size of 500,000 diploids in the most recent generation
that is truncated from the plot.
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Figure A2 The lowest entries of the frequency spectra implied by our modified YRI demography for sample sizes of n = 300,000 diploids (left)
or n = 100 diploids (right). The high mutation rate corresponds to the mutation rate of a methylated CpG (1.25 × 10−7 per generation) and the
low mutation rate roughly corresponds to the rate of transversions (2.44 × 10−9 per generation). The spectra for the two mutation rates almost
coincide on the right plot.
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26 Scaling the DTWF model

the perturbation is a lower order term.1

Analyzing how the sparsification affects the moments is substan-2

tially more technical, but we include it here for completeness. We3

will prove the closeness of the first two moments of the truncated and4

non-truncated Binomial distributions by showing that the truncated5

Binomial distribution is very close to a truncated Normal distribution,6

for which we can readily compute moments, and then show that those7

moments are close to those of the Binomial distribution. Our proof8

relies on a non-uniform version of the celebrated Berry-Esseen theorem9

(Nagaev 1965), which we include here without proof.10

Lemma 15. (Non-uniform Berry-Esseen bound for Binomial, adapted
from Nagaev (1965, Theorem 3)) Let X ∼ BN,p, and let Z ∼ N (0, 1).
Then, there exists a universal constant c such that∣∣∣∣∣P

(
X − Np√
Np(1 − p)

≥ z

)
− P (Z ≥ z)

∣∣∣∣∣
≤ c

(1 + |z|3)
√

Np(1 − p)
.

Using the Berry-Esseen bound we can show that Binomial distribu-11

tions truncated as described in Lemma 6 (and used in our approach)12

are quantitatively similar in distribution to a truncated Gaussian.13

Lemma 16. (Non-uniform Berry-Esseen bound for truncated Bino-
mial) Let X̃ ∼ B̃ε

N,p be a random variable drawn from a Binomial
distribution truncated as described in Lemma 6. Define zmin as

zmin := −

√
log (2/ε)

2p(1 − p)
,

and zmax as

zmax :=

√
log (2/ε)

2p(1 − p)
.

Let Z̃ be distributed according to a truncated standard Normal distri-
bution, truncated at zmin and zmax. Then,∣∣∣∣∣P

(
X̃ − Np√
Np(1 − p)

≥ z

)
− P

(
Z̃ ≥ z

)∣∣∣∣∣
≤ O

(
1

(1 + |z|3)
√

Np(1 − p)

)
.

Proof. First, note that by construction X̃ and Z̃ are truncated at the14

same points (that is zmin and zmax are simply the centered and scaled15

versions of kmin and kmax appearing in Lemma 6) so for any z lying16

outside of these truncation points, the bound in the Lemma is vacuously17

true, as the difference in the distributions is 0.18

Now, consider a z ∈ [zmin, zmax]. We begin by rewriting the distri-
bution of X̃ in terms of the distribution of a Binomial random variable,
X ∼ BN,p:

P

(
X̃ − Np√
Np(1 − p)

< z

)

=

P

(
X−Np√
Np(1−p)

≥ z
)
− P

(
X−Np√
Np(1−p)

≥ zmax

)
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

) ,

and using Lemma 15 we can write the right hand side as

=

P (Z ≥ z)− P

(
X−Np√
Np(1−p)

≥ zmax

)
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)
+ O

(
1

(1 + |z|3)
√

Np(1 − p)

)
,

where we used that by Lemma 6 the denominator is at least some
constant independent of N, p, and z. We now write the probability
involving Z in terms of Z̃

P (Z ≥ z) = [P (Z ≥ zmin)− P (Z ≥ zmax)]P
(

Z̃ < z
)

+ P (Z ≥ zmax) .

Plugging this result in, we obtain

P

(
X̃ − Np√
Np(1 − p)

< z

)

=

 P
(

Z̃ < z
)
(P (Z ≥ zmin)− P (Z ≥ zmax))

P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)


+

P (Z ≥ zmax)− P

(
X−Np√
Np(1−p)

≥ zmax

)
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)
+ O

(
1

(1 + |z|3)
√

Np(1 − p)

)
. (4)

We now tackle the two terms on the right hand side of the previous
equation, starting with the second term. Bounding the denominator by
a constant, as above, and applying Lemma 15 we see

P (Z ≥ zmax)− P

(
X−Np√
Np(1−p)

≥ zmax

)
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)
= O

(
1

(1 + |zmax|3)
√

Np(1 − p)

)

Now, noticing that since z ∈ [zmin, zmax], we have that |z| ≤ |zmax|
by construction, and so we can loosen this bound to

= O

(
1

(1 + |z|3)
√

Np(1 − p)

)
.

We now turn to the first term on the right hand side of Equation 4,
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where we use similar tricks:

P (Z ≥ zmin)− P (Z ≥ zmax)

P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)

= 1 −
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P (Z ≥ zmin)

P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)

−
P (Z ≥ zmax)− P

(
X−Np√
Np(1−p)

≥ zmax

)
P

(
X−Np√
Np(1−p)

≥ zmin

)
− P

(
X−Np√
Np(1−p)

≥ zmax

)
= 1 + O

(
1

(1 + |zmin|3)
√

Np(1 − p)

)

+ O

(
1

(1 + |zmax|3)
√

Np(1 − p)

)

= 1 + O

(
1

(1 + |z|3)
√

Np(1 − p)

)
.

Using these results, we may simplify Equation 4 to obtain

P

(
X̃ − Np√
Np(1 − p)

< z

)
= P

(
Z̃ < z

)
+ O

(
1

(1 + |z|3)
√

Np(1 − p)

)
.

1

With our truncated version of the non-uniform Berry-Esseen the-2

orem, we are now ready to prove that our truncation of the Binomial3

distribution does not substantially alter the first two moments.4

Proposition 3. Let X̃ ∼ B̃ε
N,p. Then,

E
[

X̃
]
= Np + O(1).

Proof. Recall that for any strictly positive random variable,

E[X̃] =
∫ ∞

0
P
(

X̃ ≥ x
)

dx.

Centering and scaling, we see

E[X̃] =
∫ ∞

0
P

(
X̃ − Np√
Np(1 − p)

≥ x − Np√
Np(1 − p)

)
dx.

Performing a change of variables and applying Lemma 16, we arrive at

E[X̃] =
√

Np(1 − p)
∫ ∞

− Np√
Np(1−p)

P
(

Z̃ ≥ z
)

+ O

(
1

(1 + |z|3)
√

Np(1 − p)

)
dz

where Z̃ is a truncated Gaussian, truncated at −
√

log(2/ε)
2p(1−p) and5 √

log(2/ε)
2p(1−p) .6

Noting that∫ ∞

− Np√
Np(1−p)

1
(1 + |z|3) dz <

∫ ∞

−∞

1
(1 + |z|3) dz =

4π

3
√

3
= O(1)

we obtain

E[X̃] = O(1) +
√

Np(1 − p)
∫ ∞

− Np√
Np(1−p)

P
(

Z̃ ≥ z
)

dz.

= O(1) + Np +
√

Np(1 − p)
∫ ∞

− Np√
Np(1−p)

zdP
(

Z̃ = z
)

,

where the second equality follows from integrating by parts. Now, 7

note that without loss of generality we can assume that p ≥ 1/2 8

(by symmetry of the Binomial). Therefore, if we take N to be large 9

enough, the lower limit of the integral is lower than the lower truncation 10

point of Z̃ so the integral covers the entire domain of Z̃. Therefore, 11

for sufficiently large N, the integral is exactly E[Z̃]. The mean of 12

a truncated standard Gaussian with symmetric truncation points is 0, 13

completing the proof. 14

Proposition 4. Let X̃ ∼ B̃ε
N,p. Then,

Var(X̃) =

(
1 + O

(
ε
√

log(1/ε)

))
Np(1 − p)

+ O
(√

Np(1 − p)
)

.

Proof. Let µB be the mean of X̃. Then, by Lemma 3,

Var(X̃) = E
[
(X̃ − µB)

2
]

= E
[
(X̃ − Np)2

]
− (µB − Np)2

= E
[
(X̃ − Np)2

]
+ O(1).

We now evaluate the expectation on the right hand side

E
[
(X̃ − Np)2

]
=
∫ ∞

0
P
(
(X̃ − Np)2 ≥ x

)
dx

=
∫ ∞

0
P
(

X̃ − Np ≥
√

x
)

+ P
(

X̃ − Np ≤ −
√

x
)

dx.

We now perform the change of variables z =
√

x/
√

Np(1 − p), and
use Lemma 16, with Z̃ being the truncated Gaussian corresponding to
X̃:∫ ∞

0
P
(

X̃ − Np ≥
√

x
)

dx

= Np(1 − p)
∫ ∞

0
2z

(
P
(

Z̃ ≥ z
)

+ O
( 1
(1 + z3)

√
Np(1 − p)

))
dz.

Noting that ∫ ∞

0

z
(1 + z)3 dz =

2π

3
√

3
= O(1),

we obtain∫ ∞

0
P
(

X̃ − Np ≥
√

x
)
= O

(√
Np(1 − p)

)
+ Np(1 − p)

∫ ∞

0
2zP

(
Z̃ ≥ z

)
dz

= O
(√

Np(1 − p)
)

+ Np(1 − p)
∫ ∞

0
P
(

Z̃ ≥ √
y
)

dy
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28 Scaling the DTWF model

where the final line follows from the change of variables z =
√

y. A
similar computation shows that∫ ∞

0
P
(

X̃ − Np ≤ −
√

x
)
= O

(√
Np(1 − p)

)
+ Np(1 − p)

∫ ∞

0
P
(

Z̃ ≤ −√
y
)

dy.

We therefore have that

E
[
(X̃ − Np)2

]
= O

(√
Np(1 − p)

)
+ Np(1 − p)

( ∫ ∞

0
P
(

Z̃ ≥ √
y
)

dy

+
∫ ∞

0
P
(

Z̃ ≤ −√
y
)

dy

)

= O
(√

Np(1 − p)
)

+ Np(1 − p)
∫ ∞

0
P
(

Z̃2 ≥ y
)

dy

= O
(√

Np(1 − p)
)
+ Np(1 − p)Var(Z̃)

where the final line follows by noting that the mean of a symmetrically
truncated standard Normal is 0. Z̃ is a standard Normal symmetrically

truncated at ±
√

log(2/ε)
2p(1−p) . Letting zmin and zmax be these truncation

points and ϕ(·) and Φ(·) be the probability density function and cu-
mulative density function of the standard Normal respectively, we have
that

Var(Z̃) = 1 +
zminϕ(zmin)− zmaxϕ(zmax)

Φ(zmax)− Φ(zmin)

= 1 +
2zmaxϕ(zmax)

Φ(zmax)− Φ(zmin)

= 1 +

√
2zmax√

π
exp

{
−z2

max
2

}
Φ(zmax)− Φ(zmin)

= 1 +
O
(

ε
√

log(1/ε)
)

Φ(zmax)− Φ(zmin)
.

The denominator can be bounded from below by 1−O(ε), completing1

the proof.2

Together, these results show that in addition to being close in total3

variation distance, our approximate process is also close in terms of4

the first two moments.5

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyad168/7277051 by Stanford M

edical C
enter user on 20 Septem

ber 2023




