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A Connection to Hypergeometric Distributions and Exponential Families

Our work is related to the theory of sampling from hypergeometric distributions that arise
from exponential families conditioned on a sufficient statistic (Diaconis and Sturmfels, 1998). In
this theory, we think of sampling as being performed on counts of each unique length P binary
vector. This perspective will allow us to precisely characterize Hc, the resampling distribution of
X introduced very recently above. Let {0, 1}P denote the collection all length P binary vectors.
For x ∈ {0, 1}P , let κ(x) = #{xi = x} be the number of observations xi of X equal to x. Observe
that because the ordering of the observations that make up the resampled dataset X∗ does not
matter for our computation of V ∗ = V (X∗), therefore sampling from the permutation resampling
distribution on X (i.e., uniformly sampling from Yc) is equivalent to sampling from the following
collection of count statistic vectors κ∗ : {0, 1}P → Z+

0 ,

Fc =

κ :
∑

x∈{0,1}P
κ(x) · x = c,

∑
x∈{0,1}P

κ(x) = N

 .

Hence, we may characterize Hc as a distribution on count statistic vectors, where each resampled
array X∗ has a unique corresponding count statistic vector κ∗ (but not the other way round).

To make the connection with exponential families, supposeN length P binary vectors, x1, . . . ,xN ,
are sampled with replacement from {0, 1}P , where the distribution over {0, 1}P is parametrized by
θ = (θ1, . . . , θP ) ∈ (0, 1)P . For a binary vector x = (x1, . . . , xP )T , let the probability of picking x

be πx =
∏P
j=1(θjxj + (1 − θj)(1 − xj)). Under such a sampling scheme, the corresponding count

statistic distribution is a multinomial distribution,

Gθ(κ) =

(
N

(κ(x) : x ∈ {0, 1}P )

) ∏
x∈{0,1}P

π
κ(x)
x .

The product term above is some combination
∏P
j=1 θ

ωj

j (1−θj)ζj . After stacking xT1 , . . . ,x
T
N row-wise

to obtain a N × P array X, notice the indices ωj and ζj are simply

ωj = #{xi contains 1 in column j},
ζj = #{xi contains 0 in column j} = N − ωj .
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Let the random vector C = C(x1, . . . ,xN ) =
∑N

i=1 xi =
∑

x∈{0,1}P κ(x) · x summarize the number

of 1’s appearing in each column. By relating C to the quantities ωj and ζj , we may write

(S1) Gθ(κ) =

(
N

(κ(x) : x ∈ {0, 1}P )

)
exp

CT logit(θ) +N
P∑
j=1

log(1− θj)

 ,
where logit(v) denotes the vector whose jth component is the one-to-one logit function t 7→
log[t/(1 − t)] applied to the jth component of v. This is a P -parameter exponential family with
sufficient statistic C. More importantly, conditioned on C = c, where c are the column sums of the
observed dataset, we obtain the resampling distribution of X. Thus, Hc is the exponential family
distribution Gθ(κ) conditioned on observing sufficient statistic C. It moreover has a closed form
probability mass function, given by the hypergeometric density

(S2) Hc(κ) =
N !

|Yc|

 ∏
x∈{0,1}P

κ(x)!

−1 .
While the mass function of Hc is exact, the mass function and distribution Fperm of V ∗ are not.
To see why, we simplify the expressions in eqs. (4) and (5). This simplification is summarized in
Proposition S1 below.

Proposition S1 (Simplification Equations). Recall that for x ∈ {0, 1}P , we let κ(x) = #{xi = x}
be the number of observations xi of X equal to x. This produces a vector κ computed from X, the
count statistic vector. Let c denote the column sums of X, κ denote its associated count statistic
vector, and ∆H = (d2H(x,y))x,y∈{0,1}P denote the 2P × 2P matrix of squared Hamming distances

between each pair of length P binary vectors. Then, the expressions in (4) and (5) are equal to the
following two expressions.

V (X) =
1

P
· 2N

N − 1

〈 κ
N
,∆H

κ

N

〉
− µ2,(S3)

µ =
2N

N − 1

P∑
p=1

cp
N

(
1− cp

N

)
.(S4)

Proof of Proposition S1. First, we verify (S4). Observe

µ =
1(
N
2

)∑
i<j

P∑
p=1

1(xip 6= xjp)

=
1(
N
2

) P∑
p=1

∑
i<j

1(xip 6= xjp)

=
1(
N
2

) P∑
p=1

cp(N − cp),

where the last equality follows from counting the number of pairs {i, j} in the pth column for which
1(xip 6= xjp) = 1.
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Next, we verify (S3). Observe

V (X) =
1(
N
2

)∑
i<j

d2H(xi,xj)−

 2N

N − 1

P∑
p=1

cp
N

(
1− cp

N

)2

=
1(
N
2

) ∑
{x,y}:x,y∈{0,1}P

d2H(x,y)κ(x)κ(y)−

 2N

N − 1

P∑
p=1

cp
N

(
1− cp

N

)2

=
2N

N − 1

〈 κ
N
,∆H

κ

N

〉
−

 2N

N − 1

P∑
p=1

cp
N

(
1− cp

N

)2

,

where the last equality follows from the definition of ∆H . �

From Proposition S1, we see that µ depends only on c and is universally bounded in N for
any fixed P . Thus, V is dominated by a quadratic form in κ, and so Fperm is the image of a
hypergeometric distribution under a quadratic map. Because (S3) does not admit a straightforward
inverse map, direct computation of Fperm is not possible. We thus rely on Algorithm 1 in practice
to estimate p-values.

B Permutation Invariance and Valid Testing

Let π : Yc → Yc be a transformation obtained from permuting observations within each column
feature, across the N observations; see Subsection 2.1 of the Main Text. The set of all such
transformations, G = SN × · · · ×SN , is the P -fold direct product of the symmetric group of order
N !. Under this notation, we see that any resampled array X∗ ∈ Yc can be written as π(X) for
some (possibly more than one choice of) π ∈ G . We write π(X) as πX to enhance readability. We
also recall that V : Yc → R is our test statistic.

The exchangeability null hypothesis can be expressed as the following null hypothesis of permu-
tation invariance:

(S1) Hp : (∀π ∈ G )(X
d
= πX).

Let G = {g1, . . . , g#G }. A consequence of Hp is the following permutation invariance of the joint
distribution of V :

(V (g1X), . . . , V (g#GX))
d
= (V (g1πX), . . . , V (g#G πX)),

for all π ∈ G .
The permutation test we describe in the Main Text rejects (S1) when V (X) > V (k)(X), where

V (1)(X) 6 . . . 6 V (#G )(X)

are the sorted test statistics, and k = d(1 − α)#G e with α ∈ [0, 1). This test is exact, in that for

any choice of α and k = k(α), under Hp, P(V (X) > V (k)(X)) 6 α. Our näıve implementation
of the test, however, resamples a large number R of permutations π ∈ G , with replacement, and
then estimates the quantity P(V (X) > V (k)(X)) by the fraction of resampled arrays whose test
statistic value exceeds Vobs. This procedure produces an unbiased estimate of the true probability,
but suffers from an inflated Type I Error for very stringent choices of α. Indeed, for a given choice
of R, we see that the resampling algorithm cannot produce outputs lying between 0 and 1/R,
and moreover, there is a non-zero probability q 6= α of the output being 0. Holding R fixed, it
is apparent that for any choice of 0 < α < 1/R, the algorithm will either reject the null (with
probability equal to q) or not reject the null (with probability equal to 1 − q). This leads to an
anti-conservative test especially for α� q.
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To ensure the Type I Error is controlled, we include the identity permutation, id, and evaluate the
fraction of resampled arrays whose test statistic value is as extreme as or exceeds Vobs. Intuitively,
this works by making sure that the estimated p-value is always positive. Below, we show that in
fact, under Hp this simple fix leads to a test that provably controls the Type I Error rate. That
is, we show that our procedure meets the following criterion: for any user-specified α and for any
R, when uniformly drawing R permutations from G with replacement, the probability of rejecting
Hp, when Hp is true, is at most α.

Theorem S2 (Valid Testing). Let G ′ be the set {id, π1, . . . , πR}, where id is the identity permu-
tation and π1, . . . , πR are elements drawn uniformly at random, with replacement, from G . Write
π0 = id, and let V (0)(X,G ′) 6 . . . 6 V (R)(X,G ′) be the ordered test statistics V (πiX), 0 6 i 6 R.

Let α ∈ [0, 1) and k = d(1− α)(R+ 1)e. Reject Hp when V (X) > V (k)(X,G ). Then, under Hp the
rejection probability is at most α.

Proof of Theorem S2. Our proof mirrors that of Theorem 2 of Hemerik and Goeman (2018), al-
though we take care to mention how various group-theoretic and probabilistic assumptions are used
throughout. Since G ′ contains id, by the group structure of G it holds that for 0 6 j 6 R the dis-
tributions of G ′π−1i := {πjπ−1i : j = 0, . . . , R} and G ′ are identical. Let i be uniformly distributed
on {0, 1, . . . , R} and write τ = πi. Then

P(V (X) > V (k)(X,G ′)) = P(V (X) > V (k)(X,G ′τ−1))

= P(V (τX) > V (k)(τX,G ′τ−1)),

where the first equality follows from G ′τ−1
d
= G ′ and the second equality follows from Hp and the

uniform randomness of τ . Since (G ′τ−1)(τX) = G ′(τ−1τX), the last expression equals P(V (τX) >

V (k)(τ−1τX,G ′) = P(V (τX) > V (k)(X,G ′)). We have thus shown that

(S2) P(V (X) > V (k)(X,G ′)) = P(V (τX) > V (k)(X,G ′)),

for τ = πi picked uniformly at random.
Finally, observe that for any G ′ chosen,

R∑
i=0

1(V (πiX) > V (k)(X,G ′)) 6 α(R+ 1).

Taking expectations and using eq. (S2), we obtain

(R+ 1) · P(V (X) > V (k)(X,G ′)) = E

(
R∑
i=0

1(V (πiX) > V (k)(X,G ′))

)
6 α(R+ 1),

which completes the proof. �

C Details of Asymptotic Results

C.1 Large P Asymptotics

In Theorem 2.2 of the Main Text, we report that the permutation-induced random variable
V (N,P )∗ has an asymptotic distribution that is a convolution of two chi-square random variables.
Moreover, the convolution weights, aN1 and aN2 , reportedly depend on the column sums of the
dataset X. Here, we explicitly relate aN1 and aN2 to the column sums c = (c1, . . . , cP ) of X.
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Define the quantities

αN,P =
1

P

P∑
p=1

cp(N − cp)(
N
2

) [
1− cp(N − cp)(

N
2

) ]
,

βN,P =
1

P

P∑
p=1

cp(N − cp)(
N
2

) [
1

2
− cp(N − cp)(

N
2

) ]
,

γN,P =
1

P

P∑
p=1

cp(N − cp)(
N
2

) [
(cp − 1)(N − cp − 1)(

N−2
2

) − cp(N − cp)(
N
2

) ]
,

and let

aN,P1 = αN,P + (N − 4)βN,P − (N − 3)γN,P ,

aN,P2 = αN,P − 2βN,P + γN,P .

Then, the quantities aN1 and aN2 are defined by limP→∞ a
N,P
i = aNi for i = 1, 2. In our software

implementation, we compute these quantities for samples X that have reasonably large number of
independent features, P , and use them as the convolution weights reported in Theorem 2.2 of the
Main Text.

C.2 Large N and Large P Asymptotics

In Subsection 2.2 of our Main Text we report that the largeN and large P asymptotic distribution
of V (N,P )∗ is Gaussian. Here, we provide formal details on how to approximate the null distribution
of V (N,P )∗ when both N and P are large. The theorem below says that V (N,P )∗ is roughly normally
distributed, with mean and variance determined by the column sums of the dataset.

Theorem S3 (Large-P , large-N Limit). With the random variable V (N,P )∗ and the quantities

αN,P , βN,P , γN,P , aN,P1 , aN,P2 as defined in Supplementary Material C.1, let limN,P→∞ α
N,P = α

and define

τN = lim
P→∞

2(N − 1)(aN,P1 )2 + 2
[(
N−1
2

)
− 1
]

(aN,P2 )2(
N
2

)2
=

2(N − 1)(aN1 )2 + 2
[(
N−1
2

)
− 1
]

(aN2 )2(
N
2

)2 .

Then τ
−1/2
N

(
V (N,P )∗ − α

) d→ N (0, 1) as P →∞ and N →∞.

Consequently, for N and P large, V (N,P )∗ is approximately distributed as N (α, τN ).

C.3 Large B and Large P Asymptotics

In Subsection 4.1 of our Main Text we report that in the case of partitionable dependent features,
the test statistic V (N,B,P )∗ has a largeB and large P asymptotic distribution under the exchangeable
null. Here, we provide formal details on how to approximate this null distribution.

Theorem S4 (Large-P and Large-B Approximation of Block Permutation Null). Let V (N,B,P )∗ be

the random variable with the block permutation null distribution of V (N,P ), where the blocks have
delimiters 1 6 P1 < · · · < PB = P . For each block b = 1, . . . , B, let d(b)(x,x′) denote the partial
Hamming distance of binary vectors x and x′, that is, the Hamming distance computed along that
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block only. (Note that under this definition the Hamming distance dH(x,x′) =
∑B

b=1 d
(b)(x,x′).)

Define the quantities

αN,B,P =
1

P

B∑
b=1

(
d(b)(xi1 ,xi2)2 −

[
d(b)(xi1 ,xi2)

]2)
,

βN,B,P =
1

P

B∑
b=1

(
d(b)(xi1 ,xi2)d(b)(xi1 ,xi3)−

[
d(b)(xi1 ,xi2)

]2)
,

γN,B,P =
1

P

B∑
b=1

(
d(b)(xi1 ,xi2)d(b)(xi3 ,xi4)−

[
d(b)(xi1 ,xi2)

]2)
,

where the indices i1, i2, i3 and i4 are distinct and the overline notation denotes taking the average
over all pairs, triples, or quadruples of observations. Further, define the quantities

bN,B,P1 = αN,B,P + (N − 4)βN,B,P − (N − 3)γN,B,P ,

bN,B,P2 = αN,B,P − 2βN,B,P + γN,B,P .

Letting limB,P→∞ b
N,B,P
i = bNi for i = 1, 2 and assuming the limits exist, define the random variable

V (N,∞,∞) =
bN1 χ

2
N−1 + bN2 χ

2

(N−1
2 )−1(

N
2

) .

Then, V (N,B,P )∗ d→ V (N,∞,∞) as B,P → ∞. In other words, for B and P large, V (N,B,P )∗ d
=

V (N,∞,∞) approximately.

D Null Models for Evaluating Large B and Large P Approximation

In Subsection 4.1 of our Main Text, we report an asymptotic result and mention that we con-
ducted a simulation study to evaluate its accuracy in practice (as measured by FPR control). Here,
we describe the models used for simulation.

We simulate data under two different generative models that produce samples with partitionable
features: (1) concatenation of a binarized autoregressive time series; and (2) concatenation of a
coalescent model commonly used as a generative model for population-genetic datasets. Briefly,
for Model (1) we simulate an AR(1) process (i.e., xt = ρxt−1 + εt) with parameter ρ = 0.5 before
applying a “normal quantile”-based binarization, whereas for Model (2) we simulate haplotypes
under the standard coalescent with recombination. In both cases, sequences are simulated in blocks,
with concatenation of the blocks to form the final observed unit (simulation code is provided under
block simulation directory of Supplementary Material zip file). Whereas Model (1) produces
blocks of the same size, Model (2) does not. In both cases we fix B = 50 and consider varying
sample sizes N ∈ {10, 50, 100, 500, 1000}, and perform Monte Carlo estimation of the FPR at
significance threshold α = 0.05 by simulating 200, 000 replications for each model and running the
approximate test.

The results are plotted in Figure S18, and we summarize them in our Main Text.

E A General Scalable Exchangeability Test Requiring Only Pairwise Distance Data

Suppose that we are given a N × P dataset X containing P partitionable features, with the
features grouped into B blocks. Each feature can be real- or complex-valued, or even be objects
lying in a metric space (B = P corresponds to the scenario where the P univariate features are
independent, and so each block consists of a single feature.) For each pair of observations x,x′, let

{d(b)(x,x′) : b = 1, . . . , B} be the collection of B distances where each distance is computed on one



NON-PARAMETRIC TEST OF EXCHANGEABILITY 7

of the blocks of features. In case the B blocks of features come from B underlying metric spaces
{(Ωb, d

(b)) : b = 1, . . . B}, then all that is needed are the distances computed on the observed data

objects. Note d(b)(·, ·) and d(b
′)(·, ·) need not be the same distance function for distinct blocks b

and b′. In practice, these distance functions are chosen based on the user application, especially
when different groups of features come from distinct data modalities. For concreteness we list two
examples with two blocks (b = 1, b′ = 2).

• We could have d(b)(x,x′) = 1
2‖x1:P1−x′1:P1

‖1 and d(b
′)(x,x′) = max(x(P1+1):P2

−x′(P1+1):P2
),

where xk:` denotes the subvector of x obtained by keeping components k up to ` of the
original.
• Suppose each sample x = (ωb, ωb′) lies in the product of metric spaces (Ωb, d

(b))⊗(Ωb′ , d
(b′)).

Here the space (Ωb, d
(b)) could be a space of phylogenetic trees equipped with some tree

metric (e.g., Billera-Holmes-Vogtmann treespace with the BHV metric (Billera et al., 2001)),

while (Ωb′ , d
(b′)) could be a space of compactly supported probability distributions equipped

with the Wasserstein metric.

Instead of V defined by (4), we now let dg(x,x
′) =

∑B
b=1 d

(b)(x,x′), and define

(S1) Vg(X) =
1

P
(
N
2

)∑
i<j

[dg(xi,xj)− µg]2,

with

(S2) µg =
1(
N
2

)∑
i<j

dg(xi,xj).

With these quantities, the general test is then permuting the blocks independently across the
observations and computing the proportion of resampled Vg values larger than or equal to the
observed value. This procedure is formalized as Algorithm 2 in Supplementary Material F.

Similar to Theorem S4 in Supplementary Material C.3, a “large B and large P” chi-square
approximation to the block permutation null distribution can be obtained for the statistic V ∗g .

F Algorithms

Algorithm 1 Computation of p-value from data array (block version)

1: Input: Individual-by-feature array X
N×P

, resampling number R, block delimiters P1, . . . , PB,

type of p-value approximation (unbiased or valid)
2: Record c = c(X), µ and Vobs = V (X)
3: Set r = 0, V∗ = ∅
4: while r < R do
5: Generate resampled array X∗ from block permutation null
6: Compute V ∗ = V (X∗)
7: V∗ ← V∗ ∪ {V ∗}
8: r ← r + 1
9: end while

10: if type is unbiased then
11: Output: p = 1

R ·#[V ∗ > Vobs]
12: else
13: Output: p = 1

R+1 · (#[V ∗ > Vobs] + 1)
14: end if
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Algorithm 2 Computation of p-value from data array (general version)

1: Input: Individual-by-feature array X
N×P

, resampling number R, type of p-value approximation

(unbiased or valid)
2: Record µg and Vobs = Vg(X) (see main text above)
3: Set r = 0, V∗ = ∅
4: while r < R do
5: Generate resampled array X∗ from block permutation null
6: Compute V ∗g = Vg(X

∗)
7: V∗ ← V∗ ∪ {V ∗g }
8: r ← r + 1
9: end while

10: if type is unbiased then
11: Output: p = 1

R ·#[V ∗ > Vobs]
12: else
13: Output: p = 1

R+1 · (#[V ∗ > Vobs] + 1)
14: end if

G Proofs of Main Results and Propositions

Throughout, we append a vector or a variable with an asterisk (e.g., x becomes x∗) to denote
their random version induced by permuting the entries of each column of the original dataset X.
When articulating a mathematical statement requiring no reasoning about randomness (e.g., an
equality between two algebraic expressions), we typically drop the asterisk to make the distinction.

Proof of Theorem 2.2. We describe our proof strategy before dotting the “i”s and crossing the “t”s.
Steps Outlining Proof

(1) Write V (N,P )∗ as the squared `2 norm of a random vector, ~M∗, with ~M∗ itself being a mean
of independent zero-mean random vectors.

(2) Apply the Central Limit Theorem to ~M∗. Together with Step 1, this implies V (N,P )∗ is
approximately weighted chi-square distributed as P →∞.

(3) Because the covariance matrix of ~M∗ is non-diagonal and singular (conditioning on the
sufficient statistic decrements the degrees of freedom by one), apply an orthogonal trans-

formation to ~M∗ to quantify the weights of the chi-square distribution.

Step 1: For 1 6 i < j 6 N , let Mij = 1
P (dH(xi,xj) − µ) be the centered normalized Hamming

distance between observations xi and xj , where µ is the average Hamming distance defined in (5).
By permuting the entries of each column of the original dataset X, we obtain random variables
x∗i ,x

∗
j and M∗ij . Note that µ is permutation-invariant, being a deterministic function of the column

sum vector c = (c1, . . . , cP ) (as verified in Proposition S1). Define

(S1) ~M∗ :=

(
M∗ij : {i, j} ∈

(
[N ]

2

))
,

a length
(
N
2

)
random vector whose entries are the random variablesM∗ij . Then V (N,P )∗ = P

(N2 )
‖ ~M∗‖22,

verifying the squared `2 norm assertion.

Next, we verify that ~M∗ in (S1) is the mean of P independent zero-mean random vectors. For

each feature p ∈ [P ] let µp = [cp(N − cp)]/
(
N
2

)
, so that µ = µ1 + . . .+ µP (as verified in the proof
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of Proposition S1). Define

R(N2 ) 3 vp =



(x1p − x2p)2
(x1p − x3p)2

...
(x1p − xNp)2

...
(x(N−1)p − xNp)2


− µp ·~1,

which is the centered vector whose entries are the distances between pairs of observations. Notice
that for any pair of distinct features p and p′, the random vectors v∗p and v∗p′ are independent.

Moreover, for each feature p and pair of observations i and j, the random variable (x∗ip − x∗jp)2
is marginally distributed as Bernoulli with success probability µp, so that E[v∗p] = 0. Finally, the

Hamming distance satisfying dH(xi,xj) =
∑P

p=1(xip − xjp)2, it follows that
∑P

p=1 vp = P ~M . This

shows ~M∗ is the mean of P independent zero-mean random vectors.

Step 2: Let Σp = E[v∗p(v
∗
p)
T ] be the covariance matrix of v∗p, and define Σ = 1

P (Σ1 + . . . + ΣP ).

Note that Σ has dimension
(
N
2

)
×
(
N
2

)
. We claim that

(S2)
√
P · ~M∗ d−→ N (0,Σ).

By the Cramér-Wold theorem, as long as we can verify that any non-zero linear combination of
~M∗ converges to the corresponding univariate normal distribution, then the convergence in (S2) is

true. Thus, let ~t ∈ R(N2 ) \ {0}. We must show that

(S3) 〈~t, ~M〉 d−→ N

(
0,

1

P
〈~t,Σ~t〉

)
.

The rest of this Step will be to verify (S3).
First, we compute Σ. Recall that Σ = 1

P (Σ1 + . . . + ΣP ). To compute a covariance matrix

Σp, we must compute covariances Cov
(

(x∗ip − x∗jp)2, (x∗kp − x∗`p)2
)

for pairs of 2-subsets {i, j} and

{k, `}. Fortunately, these covariances can be computed by splitting into three cases, with each case
requiring a combinatorial argument to arrive at the covariance quantity.

• (Case I: {i, j} = {k, `}) Then,

Cov
(
(x∗ip − x∗jp)2, (x∗kp − x∗`p)2

)
= Var((x∗ip − x∗jp)2) =

cp(N − cp)(
N
2

) [
1− cp(N − cp)(

N
2

) ]
.

• (Case II: |{i, j} ∩ {k, `}| = 1) Then,

Cov
(
(x∗ip − x∗jp)2, (x∗kp − x∗`p)2

)
=
cp(N − cp)
N(N − 1)

−

[
cp(N − cp)(

N
2

) ]2
.

• (Case III: |{i, j} ∩ {k, `}| = 0) Then,

Cov
(
(x∗ip − x∗jp)2, (x∗kp − x∗`p)2

)
=

4cp(N − cp)(cp − 1)(N − cp − 1)

N(N − 1)(N − 2)(N − 3)
−

[
cp(N − cp)(

N
2

) ]2
.
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Thus, (abusing notation ij = {i, j} and) letting ij and k` each run over all 2-subsets of [N ],

[Σp]ij,k` =



cp(N−cp)
(N2 )

[
1− cp(N−cp)

(N2 )

]
if ij = k`

cp(N−cp)
N(N−1) −

[
cp(N−cp)

(N2 )

]2
if |ij ∩ k`| = 1

4cp(N−cp)(cp−1)(N−cp−1)
N(N−1)(N−2)(N−3) −

[
cp(N−cp)

(N2 )

]2
if |ij ∩ k`| = 0

By summing the matrices Σp, the calculations above imply that the entries of Σ satisfy

[Σ]ij,k` =



1
P

∑P
p=1

(
cp(N−cp)

(N2 )

[
1− cp(N−cp)

(N2 )

])
= αN,P if ij = k`

1
P

∑P
p=1

(
cp(N−cp)
N(N−1) −

[
cp(N−cp)

(N2 )

]2)
= βN,P if |ij ∩ k`| = 1

1
P

∑P
p=1

(
4cp(N−cp)(cp−1)(N−cp−1)

N(N−1)(N−2)(N−3) −
[
cp(N−cp)

(N2 )

]2)
= γN,P if |ij ∩ k`| = 0

Now that Σ is computed, we verify (S3) by checking that the Lyapunov condition holds. Here,
we require two facts that will be proved in Step 3.

(A) The matrix Σ has eigenvalues
0, with multiplicity 1

αN,P + (N − 4)βN,P − (N − 3)γN,P , with multiplicity N − 1

αN,P − 2βN,P + γN,P , with multiplicity
(
N−1
2

)
− 1

(B) The eigenspaces associated with each eigenvalue are as follows.

– For eigenvalue 0, S1 = span({~1}).
– For eigenvalue α + (N − 4)β − (N − 3)γ, S2 = span

(
{x1, . . . ,xN}

)
, where xn are

defined in Theorem 2.2.
– For eigenvalue α − 2β + γ, S3 = span

(
{w12, . . . ,wN−1,N}

)
, where wij are defined in

Theorem 2.2.

When ~t = λ~1 in (S3), observe that 〈 ~M∗,~1〉 = 0, a consequence of each component of ~M∗ having
mean zero. Together with Fact (B) ensuring that 〈~t,Σ~t〉 = 0 whenever ~t ∈ S1, (S3) holds trivially.
Thus, we assume for the rest of our argument that ~t 6∈ S1.

For ~t picked, let its projection onto S1 be ~t◦ and its projection onto the orthocomplement (i.e.,
the space S2 ⊕ S3) be ~t⊥. Note that ~t = ~t◦ + ~t⊥. From Step 1, we have the identity

〈~t, ~M〉 =
1

P

(
〈~t,v1〉+ . . .+ 〈~t,vP 〉

)
.

To show the Lyapunov condition holds, we must verify that there exists δ > 0 such that

(S4) lim
P→∞

1

s2+δP

P∑
p=1

E
[
|〈~t,v∗p〉 − E[〈~t,v∗p〉]|2+δ

]
= 0,

where

sP :=

√√√√ P∑
p=1

Var
(
〈~t,vp〉

)
.
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As it turns out, essentially the boundedness of the sum of entries of v∗p (= cp, a constant in P )

guarantees that (S4) holds for any δ > 0.1 We check this carefully below.

From earlier computations we know that sP =
√
P · 〈~t,Σ~t〉. For brevity, introduce shorthand

notation for the two non-zero eigenvalues:

λ1 = αN,P + (N − 4)βN,P − (N − 3)γN,P

λ2 = αN,P − 2βN,P + γN,P .

Further algebra and use of Fact (B) imply that sP =
√
P · (λ1‖~t⊥,2‖22 + λ2‖~t⊥,3‖22), where ~t⊥ =

~t⊥,2 + ~t⊥,3 is a further projection of ~t⊥ on the remaining two subspaces S2 and S3. Note at least

one of the vectors ~t⊥,2 and ~t⊥,3 is non-zero, by assumption.

Now, let’s bound each summand E
[
|〈~t,v∗p〉 − E[〈~t,v∗p〉]|2+δ

]
of the numerator of (S4). First, ob-

serve that the random vector v∗p always contains cp(N−cp) ones and
(
N
2

)
−cp(N−cp) zeros. Denoting

by the random variable W ∗p the linear combination, that is W ∗p := 〈~t,v∗p〉 =
∑
{i,j}∈([N ]

2] ) tij(v
ij
p )∗,

then W ∗p is supported on the interval with endpoints

τpmin := min

 ∑
{i,j}∈A

tij : A ranges over all subsets of

(
[N ]

2

)
of size cp(N − cp)


τpmax := max

 ∑
{i,j}∈A

tij : A ranges over all subsets of

(
[N ]

2

)
of size cp(N − cp)


and moreover E[W ∗p ] = 0 since E[v∗p] = 0.

Set τ̂p = |τpmax| ∨ |τpmin|. Then observe that τ̂p 6 ‖~t‖1 6
√(

N
2

)
‖~t‖2. Moreover,

W ∗p
τ̂p

is bounded

between −1 and 1. Recalling the definition of W ∗p and rearranging terms, we obtain the upper
bound

E
[
|〈~t,v∗p〉 − E[〈~t,v∗p〉]|2+δ

]
6 (τ̂p)

δVar(〈~t,v∗p〉).

Now define τ̂ = maxp∈[P ] τ̂p. Observe that τ̂ 6 ‖~t‖1 6
√(

N
2

)
‖~t‖2, which is finite. Moreover,

upon replacing τ̂p with τ̂ in the upper bound above and summing over p, we obtain the following
upper bound on the numerator of (S4):

1

s2+δP

P∑
p=1

E
[
|〈~t,v∗p〉 − E[〈~t,v∗p〉]|2+δ

]
6

(
τ̂

sP

)δ
.

To finish the verification of Lyapunov’s condition, it suffices to show that the ratio sP /τ̂ increases
in P . We compute this using earlier working:

sP
τ̂
>

√√√√P ·
(
λ1‖~t⊥,2‖22 + λ2‖~t⊥,3‖22

)(
N
2

)
‖~t‖22

=
√
P · 1√(

N
2

) ·
√

λ1‖~t⊥,2‖22 + λ2‖~t⊥,3‖22
‖~t◦‖22 + ‖~t⊥,2‖22 + ‖~t⊥,3‖22

.

1This boundedness also implies that the weaker Lindeberg condition holds, which is also sufficient for verifying
(S3).
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From the final expression on RHS above it is clear that sP /τ̂ grows at least like
√
P , which com-

pletes the verification of (S4).

Step 3: We have just shown that (S2) holds. If Σ were diagonal, then the continuous mapping
theorem applied to

(S5) f : R(N2 ) → R, f(z) =
1(
N
2

)‖z‖22
would imply that V (N,P )∗ = f(

√
P ~M∗) is approximately a weighted sum of chi-square random

variables with one degree of freedom, where the weights are the diagonal entries of Σ. Because Σ is
not actually diagonal, we have to diagonalize Σ by performing an extra eigendecomposition step.

To this end, we shall state and prove a general lemma concerning “combinatorial matrices,” by
which we mean matrices whose dimensions are indexed by subsets and whose entries are determined
by intersection properties of these subsets.2

Lemma S5 (Eigendecomposition of combinatorial matrices). Let Σ be a
(
N
2

)
×
(
N
2

)
matrix, whose

dimensions are indexed by the 2-subsets {i, j} of [N ]. Let the entries of Σ be exactly one of three
quantities — a, b and c — with the positions of a, b and c determined by the intersection of the
2-subset indices, as described by the equation below:

[Σ]ij,k` =


a if ij = k`

b if |ij ∩ k`| = 1

c if |ij ∩ k`| = 0

Then, Σ has the the following eigenvalues,

a+ (2N − 4)b+

(
N − 2

2

)
c

a+ (N − 4)b− (N − 3)c

a− 2b+ c

with multiplicities 1, (N − 1) and
(
N−1
2

)
− 1 respectively. The eigenspaces and eigenvectors can be

summarized as follows:

• For eigenvalue a + (2N − 4)b +
(
N−2
2

)
c, the eigenspace is span({1}), which has dimension

1.
• For eigenvalue a+ (N − 4)b− (N − 3)c, the eigenspace is span({x1, . . . ,xN}), where

xnij =

{
1 if n ∈ {i, j}
−2
N−2 if n 6∈ {i, j}

,

and moreover x1 + . . .+ xN = 0.

• For eigenvalue a− 2b+ c, the eigenspace is span
({
wij : ij ∈

(
[N ]
2

)})
, where

wij
k` =


1 if {i, j} = {k, `}
−1
N−2 if |{i, j} ∩ {k, `}| = 1

1

(N−2
2 )

if |{i, j} ∩ {k, `}| = 0

,

and moreover, for any fixed i,
∑

j 6=iw
ij = 0.

2Such matrices, and their higher-order tensor analogues, arise naturally in non-parametric statistics, under the
guise of terms involved in computing the second and higher moments of a random vector having a uniform distribution
over all permutations.
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Remark that the covariance matrix Σ in our problem is a special case of Lemma S5, with a =
αN,P , b = βN,P , c = γN,P . It is a healthy exercise in algebra to verify that a+(2N−4)b+

(
N−2
2

)
c = 0

for our problem, and to check that Facts (A) and (B) are special cases of this general lemma.

Proof of Lemma S5. We shall construct the eigenvectors explicitly. Like Σ, the components of these
eigenvectors are indexed by 2-subsets, which will allow us to reason about them combinatorially.

First, consider the vector of all 1s, 1. For a row in Σ indexed by the 2-subset {i, j}, we can freely
replace i with any k ∈ [N ] \ {j} and vice-versa to obtain a 2-subset that overlaps {i, j} by one, so
there are exactly 2(N − 2) such subsets. We can obtain a subset that does not overlap {i, j} by

choosing two indices from [N ] \ {i, j} so there are
(
N−2
2

)
such subsets. Therefore, the row sum of

Σ corresponding to pair {i, j} is a + (2N − 4)b +
(
N−2
2

)
c. Because {i, j} was arbitrary, this is the

row sum for each row. Therefore

Σ1 =

(
a+ (2N − 4)b+

(
N − 2

2

)
c

)
1.

We now consider a vector x constructed as follows:

xij :=

{
1 if 1 ∈ {i, j}
η if 1 6∈ {i, j}

,

with

η :=
−2b− (N − 3)c

(N − 2)b+
(
N−2
2

)
c

=
−2

N − 2
.

That is, for every index corresponding to a subset containing 1 the vector’s entry is 1, and for all
indices that do not contain 1 the entry is η. We now have two cases to consider. First, consider a
row of Σ that corresponds to a pair that contains 1, and call this row Σinc.

ΣT
incx = a+ (N − 2)b+ (N − 2)bη +

(
N − 2

2

)
cη,

which follows because this entry contains 1 and so a has coefficient 1. Then, there are (N −2) pairs
that overlap this set that also contain 1, hence the term (N − 2)b. There are also (N − 2) pairs

that overlap this set but do not contain 1 resulting in the term (N − 2)bη. Finally there are
(
N−2
2

)
pairs that do not contain 1 and also do not overlap this set, corresponding to the

(
N−2
2

)
cη term.

Rearranging terms, we obtain

ΣT
incx = a+ (N − 2)b+

[
(N − 2)b+

(
N − 2

2

)
c

]
η

= a+ (N − 2)b− 2b− (N − 3)c

= a+ (N − 4)b− (N − 3)c.

Now, consider a row of Σ that corresponds to a pair that does not contain 1, and call this row Σexc.

ΣT
excx = aα+ 2b+ 2(N − 3)bη + (N − 3)c+

(
N − 3

2

)
cη.

The first term is because the set under consideration does not contain 1. There are then exactly two
sets that overlap the present set that also contain 1, resulting in 2b. Meanwhile, there are 2(N − 3)
sets that overlap the present set but do not contain 1 giving 2(N − 3)bη. The term (N − 3)c comes

from the N − 3 sets that contain 1 but do not overlap the present set. Finally, there are
(
N−3
2

)
sets

that do not overlap the present set and also do not contain 1 resulting in
(
N−3
2

)
cη. We can now
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rearrange and use the definition of η to see

ΣT
excx =

(
a+ 2(N − 3)b+

(
N − 3

2

)
c

)
η + 2b+ (N − 3)c

=

(
a+ 2(N − 3)b+

(
N − 3

2

)
c

)
η −

(
(N − 2)b+

(
N − 2

2

)
c

)
η

= (a+ (N − 4)b− (N − 3)c) η.

Therefore x is an eigenvector with eigenvalue a+ (N − 4)b− (N − 3)c.
Because treating 1 as being “special” in the construction of x was arbitrary we can repeat this

process N times to obtain N eigenvectors, x1, . . . ,xN . We now check that these N eigenvectors
span a space of dimension N − 1. Observe that

x1 + · · ·+ xN = 0,

since each component ij of this sum of vectors is exactly 2 + (N − 2)η = 2 − 2 = 0. On the

other hand, suppose that λ1, . . . , λn are scalars such that
∑N

k=1 λkx
k = 0. By considering each

component of this sum, we obtain linear equations involving each 2-subset {i, j} of [N ]:

λi + λj =
2

N − 2

∑
k∈[N ]\{i,j}

λk.

By adding 2/(N − 2) · (λi +λj) to each side of the equation and multiplying by (N − 2), we recover
N(λi + λj) = N(λi′ + λj′), from which it is easy to see that λ1 = . . . = λN . This shows that

dim(span(x1, . . . ,xN )) = N − 1, as desired.
For the final eigenvalue, we now consider 2 “special” indices. Without loss of generality take

these special indices to be 1 and 2. We will separately consider subsets that overlap zero times,
once, or twice of {1, 2} and allow each to have independent values. Concretely, consider the vector
w whose components are given by

wij :=


1 if {1, 2} ∩ {i, j} = 2

ζ if {1, 2} ∩ {i, j} = 1

ϑ if {1, 2} ∩ {i, j} = 0

,

with

ζ :=
−1

N − 2

ϑ :=
1(

N−2
2

) .
Now, as before, we consider the corresponding three types of rows of Σ. First, consider the row
that corresponds to the focal pair {1, 2}, which we will call Σfocal. We see

ΣT
focalw = a+ (2N − 4)bζ +

(
N − 2

2

)
cϑ,

which follows easily because for the focal pair, the sets that overlap exactly, partially, or not at all
are exactly those that we used to construct w. Substituting the definitions of ζ and ϑ we get

ΣT
focalw = a− 2b+ c.

Consider a row whose indexing subset partially overlaps {1, 2}, and call it Σpartial.

ΣT
partialw = ζa+ b+ (N − 2)ζb+ (N − 3)ϑb+ (n− 3)ζc+

(
n− 3

2

)
ϑc.
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By construction {1, 2} partially overlaps the present subset and vice-versa giving us ζa+ b. There
are N − 2 subsets that partially overlap {1, 2} and the present subset resulting in (N − 2)ζb. The
term (N − 3)ϑb comes from the N − 3 pairs that do not overlap {1, 2} but do partially overlap the
present subset. Conversely, there are (N −3) subsets that do not overlap the present subset but do

overlap {1, 2} giving (N − 3)ζc. Finally, there are
(
N−3
2

)
subsets that do not overlap the present

pair of {1, 2} resulting in
(
N−3
2

)
ϑc. We again collect terms and apply the definitions of ζ and ϑ to

see

ΣT
partialw =

(
a+ (N − 2)b+ (N − 3)c

)
ζ + b+ (N − 3)ϑb+

(
N − 3

2

)
ϑc

=
(
a+ (N − 2)b+ (N − 3)c

)
ζ − (N − 2)bζ − (N − 2)(N − 3)(

N−2
2

) bζ −
(N − 2)

(
N−3
2

)(
N−2
2

) cζ

= (a− 2b+ c)ζ

Lastly, consider a row whose indexing subset does not overlap {1, 2} and call it Σnon.

ΣT
nonw = ϑa+ c+ 4ζb+ (2N − 8)ϑb+ (2N − 8)ζc+

(
N − 4

2

)
ϑc,

where we get ϑa and c because the present subset does not overlap {1, 2} and vice-versa. There are
exactly 4 subsets that partially overlap {1, 2} and the present subset, giving 4ζb. Meanwhile, there
are (2N − 8) sets that overlap the present subset but do not overlap {1, 2} and vice-versa giving

(2N − 8)ϑb and (2N − 8)ζc. Lastly, there are
(
N−4
2

)
subsets that do not overlap the present subset

or {1, 2} yielding
(
N−4
2

)
ϑc. Rearranging we see

ΣT
nonw =

(
a+ (2N − 8)b+

(
N − 4

2

)
c

)
ϑ+ c+ 4ζb+ (2N − 8)ζc

=

(
a+ (2N − 8)b+

(
N − 4

2

)
c

)
ϑ+

(
N − 2

2

)
cϑ−

4
(
N−2
2

)
N − 2

bϑ−
(2N − 8)

(
N−2
2

)
N − 2

cϑ

= (a− 2b+ c)ϑ.

Therefore w is an eigenvector with eigenvalue a− 2b+ c.
We again can repeat this process choosing different “special” pairs of indices. This results in(

N
2

)
eigenvectors, w12, . . . ,wN−1,N . It is easy to see that there are N redundant eigenvectors

(e.g., consider all pairs that contain 1 — the eigenvector corresponding to the last pair is a linear
combination of the first N − 2). By mirroring the analysis in the case of the second eigenvalue

above, we see that these
(
N
2

)
eigenvectors span a space of dimension

(
N
2

)
−N =

(
N−1
2

)
− 1. �

Lemma S5 implies the following eigendecomposition for our covariance matrix Σ. Let

(S6) Σ = UΛUT ,

with

Λ = diag

αN,P + (N − 4)βN,P − (N − 3)γN,P︸ ︷︷ ︸
(N−1) times

, αN,P − 2βN,P + γN,P︸ ︷︷ ︸
(N−1

2 )−1 times

, 0

 ,

and the orthogonal matrix U =

 · · ·
u1 · · · u(N2 )
· · ·

 satisfying

• u1, . . . ,uN−1 obtained by performing Gram-Schmidt on the set {x1, . . . ,xN} (should obtain
N − 1 orthogonal vectors from x1, . . . ,xN−1).



16 NON-PARAMETRIC TEST OF EXCHANGEABILITY

• uN , . . . ,u(N2 )−1 obtained by performing Gram-Schmidt on the set
{
wij : ij ∈

(
[N ]
2

)}
.

• u(N2 ) = 1√
(N2 )

1.

By (S2), ~Y ∗ = UT ~M∗ satisfies

√
P · ~Y ∗ d−→ N (0,Λ) .

Because the map defined by (S5) is invariant to orthogonal transformations (‖~Y ‖22 = ~MTUUT ~M =

‖ ~M‖22), we obtain by the continuous mapping theorem

V (N,P )∗ = f(
√
P ~M∗) = f(

√
P ~Y ∗)

d−→ V (N,∞),

which concludes the proof. �

Proof of Theorem S3. The proof of Theorem 2.2 showed that when P is large, V (N,P )∗ is approxi-
mately a weighted sum of

(
N
2

)
−1 chi-square random variables. Concretely, let λ1 = . . . = λN−1 = σ21

and λN = . . . = λ(N2 )−1 = σ22, where

σ21 = aN1 , σ22 = aN2

with the quantities aN1 and aN2 defined in Theorem 2.2. Then,

V (N,P )∗ d
=

1(
N
2

) (Y 2
1 + . . .+ Y 2

(N2 )−1

)

holds approximately as long as P is large, where Yn
ind∼ N(0, λn). Thus, we can immediately apply

the Central Limit Theorem (in N) to the sequence {Y 2
n : n = 1, . . . ,

(
N
2

)
} and obtain the conclusion.

All that remains is to check that the mean and variance of V (N,∞) converge to the quantities stated
in Theorem S3. For the variance, there is nothing to check. For the mean, notice that

lim
N→∞

E[V (N,∞)] = lim
N→∞

aN1 (N − 1) + aN2

((
N−1
2

)
− 1
)

(
N
2

)


= lim
N→∞

[(
1− 1(

N
2

))αN +

(
2(
N
2

) − 4

N

)
βN −

(
1 +

1(
N
2

) − 4

N

)
γN

]
= α,

where the last equality follows from limN,P→∞ γ
N,P = 0 (a healthy exercise) and the fact that

αN , βN and γN are uniformly bounded in N .

Finally, as a technical point, because aN,P1 and aN,P2 are uniformly bounded in both N and P ,

we have limN,P→∞ a
N,P
i = limN→∞ limP→∞ a

N,P
i = limN→∞ a

N
i for i = 1, 2, assuming these limits

exist. Similar reasoning justifies α = limN,P→∞ α
N,P = limN→∞(limP→∞ α

N,P ) = limN→∞ α
N

and 0 = limN,P→∞ γ
N,P = limN→∞(limP→∞ γ

N,P ) = limN→∞ γ
N , which are equalities implicitly

invoked in the previous paragraph. �

Proof of Theorem S4. Our proof strategy is identical to the proof of Theorem 2.2. However, unlike
the latter, where there are P independent features, here we have B independent blocks. Concretely,
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define

R(N2 ) 3 vb =



d(b)(x1,x2)

d(b)(x1,x3)
...

d(b)(x1,xN )
...

d(b)(xN−1,xN )


− d(b)(xi1 ,xi2) ·~1,

which is the vector of partial Hamming distances associated with block b. Let Σb = E[v∗b(v
∗
b)
T ].

Then, by mirroring Step 2 in the proof of Theorem 2.2, it holds that

(S7)
√
B

(
1

B

B∑
b=1

v∗b

)
d−→ N (0,Σ),

where Σ := 1
B (Σ1 + . . .+ ΣB).

Now, since ~M defined in Step 1 of the proof of Theorem 2.2 satisfies ~M = B
P ( 1

B

∑B
b=1 vb) and

V (N,P ) = V (N,B,P ) = P

(N2 )
‖ ~M‖22,

V (N,B,P )∗ =
P(
N
2

)∣∣∣∣∣
∣∣∣∣∣BP
(

1

B

B∑
b=1

v∗b

)∣∣∣∣∣
∣∣∣∣∣
2

2

=
1(
N
2

)∣∣∣∣∣
∣∣∣∣∣
√
B

P
·
√
B

(
1

B

B∑
b=1

v∗b

)∣∣∣∣∣
∣∣∣∣∣
2

2

.

Applying (S7) to the expression on the RHS above, we see that, similar to Step 3 in the proof of
Theorem 2.2, if Σ′ = B

P ·Σ were diagonal, then the continuous mapping theorem would imply that

V (N,B,P )∗ is approximately a weighted sum of chi-square random variables, where the weights are
the diagonal entries of Σ′.

To finish the proof, we apply Lemma S5 to the matrix Σ′. It is a healthy exercise to reason that
αN,B,P , βN,B,P and γN,B,P are the analogues of αN,P , βN,P and γN,P in Theorem 2.2, and that the
argument of Step 3 there carries over mutatis mutandis to here. �

Proof of Theorem 5.1. We will rely on the following Berry-Esséen bound for sums of indepen-
dent random vectors, due to Raič (2019). Suppose that v1, . . . ,vP is a collection of indepen-
dent but not necessarily identically distributed zero mean D-dimensional random vectors, and
assume that

∑P
p=1 Var(vp) = ID. Define the random vector w =

∑P
p=1 vp, and denote the

standard D-variate Gaussian law by N (0, ID){·}, so that for any measurable set A ⊆ RD,

N (0, ID){A } =
∫
A (2π)−D/2 exp

(
−1

2‖x‖
2
2

)
dx. Then, for any measurable convex set A ⊆ RD,

(S8) |P(w ∈ A )−N (0, ID){A }| 6 (42D1/4 + 16)

P∑
p=1

E‖vp‖32.

To apply the bound above, we let (a modification of) the random vectors v∗1, . . . ,v
∗
P , as defined

in the proof of Theorem 2.2, play the role of v1, . . . ,vP . As in the proof of Theorem 2.2, we first
describe our proof strategy before presenting the details.
Steps Outlining Proof

(1) Denoting Var(v∗p) = Σp and ~M = 1
P (v1 + . . .+vP ) just like we did in the proof of Theorem

2.2, we saw in that proof that the covariance matrix Σ = 1
P (Σ1 + . . .+ ΣP ) of

√
P · ~M∗ has

eigenvalue 0 with multiplicity 1. We perform a truncation so that the resulting collection of
independent random vectors has an invertible covariance matrix allowing the Berry-Esséen
bound to be applied.



18 NON-PARAMETRIC TEST OF EXCHANGEABILITY

(2) Using the identity V (N,P )∗ = P

(N2 )
‖ 1
P

∑P
p=1 v

∗
p‖22 (see Step 1 of proof of Theorem 2.2), we re-

late the multi-dimensional Berry-Esséen bound to the total variation bound for the random
variable V (N,P )∗.

Step 1: Recall the orthogonal matrix U (see (S6)) from the proof of Theorem 2.2, whose columns

are the eigenvectors of Σ and moreover satisfies Σ = UΛUT . Define ~Y ∗p = 1√
P
UTv∗p for p = 1, . . . , P .

(Note that U and Λ depend only on c, which is fixed.).

By the invariance of the test statistic to orthogonal transformations of ~M , we see that V (N,P )∗ =
1

(N2 )
‖~Y ∗‖22, where ~Y ∗ = ~Y ∗1 + . . . + ~Y ∗P and satisfies Cov(~Y ∗) = Λ. Moreover, because E[~Y ∗] =

√
P · UTE[ ~M∗] = 0, the last component of ~Y ∗ is 0.

Define ~Wp = ~Yp[: −1], which is ~Yp without its last component. Observe that { ~W ∗p : p = 1, . . . , P}
is a collection of independent random variables, and moreover V (N,P )∗ = 1

(N2 )
‖ ~W ∗1 + . . . + ~W ∗P ‖22,

because the last component of ~Y ∗ is 0. Letting ~W =
∑P

p=1
~Wp, we have Cov( ~W ∗) = Λ′, where

Λ′ = diag(λ1, . . . , λ1, λ2, . . . , λ2) is the invertible diagonal matrix obtained from excluding the last
row and last column of Λ. (Note that λ1 and λ2 depend on αN,P , βN,P and γN,P , which in turn
depend only on c.)

Now, let D =
(
N
2

)
− 1. Then, {(Λ′)−1/2 ~W ∗p : p = 1, . . . , P} is a collection of RD-valued inde-

pendent random vectors, each with mean 0. Letting w denote their sum, we see that Cov(w) =

(Λ′)−1/2Λ′[(Λ′)−1/2]T = ID. Thus, (S8) holds with (Λ′)−1/2 ~W ∗p in place of vp in the upper bound
expression.

Step 2: Given the collection {(Λ′)−1/2 ~W ∗p : p = 1, . . . , P} satisfying the Berry-Esséen bound, we
now verify that the multidimensional bound translates into the desired rate of convergence. To this
end, we first establish a further upper bound on the multidimensional bound that depends only on

the dimensionality of the problem. Let us bound each term E‖(Λ′)−1/2 ~W ∗p ‖32 that appears on the
RHS of (S8). Observe

‖(Λ′)−1/2 ~Wp‖32 = ( ~Wp(Λ
′)−1 ~Wp)

3/2

6 (λ1 ∧ λ2)−3/2‖ ~Wp‖32
6 (λ1 ∧ λ2)−3/2‖~Yp‖32
6 P−3/2(λ1 ∧ λ2)−3/2‖vp‖32.

Let us bound the RHS expression above. By noticing that vp is a vector that contains cp(N − cp)
copies of 1 − cp(N−cp)

(N2 )
and

(
N
2

)
− cp(N − cp) copies of

−cp(N−cp)
(N2 )

, it is a healthy exercise to show

that ‖vp‖32 6 1
4

(
N
2

)3/2
= 1

4(D + 1)3/2. Combining these inequalities, we obtain E‖(Λ′)−1/2 ~W ∗p ‖32 6
1
4

(
D+1
P ·λmin

)3/2
, where λmin = λ1 ∧ λ2. Therefore, we have

(S9) |P(w ∈ A )−N (0, ID){A }| 6 (42D1/4 + 16) · P · 1

4

(
D + 1

P · λmin

)3/2

6 C · P−1/2 ·D7/4,

where C is a constant depending only on c and A is any measurable convex set.
Given that we now have an upper bound in (S9) that depends only on the dimensionality of the

problem, we shall use it to derive our desired total variation bound. Observe that for any convex set

A ⊆ RD, w ∈ A if and only if ~W ∗ ∈ (Λ′)1/2A , where (Λ′)1/2A = {(Λ′)1/2y : y ∈ A }, because the

map A 7→ (Λ′)−1/2A is invertible. This map also preserving measurability and convexity, we obtain

|P( ~W ∗ ∈ A ) − N (0,Λ′){A }| 6 C · P−1/2 · D7/4 for any convex and measurable A . Now, recall
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that V (N,P )∗ = 1

(N2 )
‖ ~W ∗‖22. Consider the function f : RD → R+

0 given by f(z) = 1

(N2 )
‖z‖22. Observe

that V (N,∞) d
= f(z), where z ∼ N (0,Λ′). Define, for any t > 0, A (t) = {z ∈ RD : f(z) 6 t}.

Then A (t) is convex (a healthy exercise). Moreover P( ~W ∗ ∈ A (t)) = P(V (N,P )∗ 6 t) (the CDF of

the permutation null) and N (0,Λ′){A (t)} = P(V (N,∞) 6 t) (the CDF of the large P distribution).
These observations together imply that for any t > 0,

|P(V (N,P )∗ 6 t)− P(V (N,∞) 6 t)| 6 C ·D7/4

√
P

,

which is the desired total variation bound (after absorbing D7/4 = [
(
N
2

)
− 1]7/4 into the definition

of the constant C). �

H Simulation Details

H.1 Type I Error Control Study

In Subsection 3.1 we describe how we simulate data from null models to investigate FPR control.
Here, we summarize the results of this simulation study.

Based on the setup described in Subsection 3.1, we perform Monte Carlo sampling to estimate
the FPR of our test, and report approximate 95% confidence intervals using the point estimate of
the FPR.

We find that our test is exact, meaning that it keeps the Type I error rate at the desired
significance level, with occasional small fluctuations due to finite sampling. In the case of P = 100
features per sampled row, as the middle row of Figure S2 shows, FPR estimates of our test,
together with their 95% confidence intervals, include the nominal significance threshold, with slight
deviations occurring mostly when the sample size N is small. (The slight deviations are an artifact
of the asymptotic test used when P = 100.) On the other hand, the FPR of the TW test is
markedly different from the nominal significance threshold, except when N is large. When we
simulated datasets with P = 10 and P = 1000 features, corresponding to small and big datasets,
we find that our test remains exact, whereas TW suffers from worse FPR control than seen in
the P = 100 case, with the FPR estimates and their 95% confidence intervals not including the
nominal significance threshold a majority of the time. In particular, when P = 1000 and N 6 30,
the Type I error rate is markedly higher than the nominal significance threshold (see the last row
of Figure S2). This phenomenon reflects the impact of the scaling factor N/P and the sizes of P
and N on the accuracy of the asymptotic TW distribution, an issue that does not surface for our
finite-sample and non-parametric approach.

H.2 Statistical Power Study

In Subsection 3.2 of the Main Text we describe a framework comprising seven scenarios and their
pairings (Table 1), in order to investigate the statistical power of exchangeability tests such as ours.
Here, we provide parametrization details for our seven scenarios and summarize the results of the
simulation study.

First, the parametrization details.

(1) Number of observations. We generally set N ∈ {10, 50, 100, 500, 1000} to cover a range of
small, moderate and large sample sizes; see Scenario 3 for exceptions.

(2) Closeness of population features or parameters. We control closeness by adjusting the
hyperparameter ε of our hierarchical model (ε ∈ {0.05, 0.1, 0.15, 0.2}).

(3) Multiple populations. We consider K ∈ {2, 3, 4, 5}. For K = 3 and K = 4, to ensure both
the number of observations drawn from each population is the same and the total number
of observations is close to the K = 2 default case, we set N ∈ {12, 60, 120, 600, 1200}.
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(4) Sparsity of discerning features. We consider f ∈ {0.1, . . . , 0.9}, and let fP features be dis-
cerning between our K populations while the remaining (1−f)P features be non-discerning
features that are identically distributed across allK populations in reality but included when
performing the statistical test.

(5) Uneven sampling. Sample evenness depends on the sampling design when the dataset is
not obtained from clustering. On the other hand, uneven representation of populations in
a dataset is typical of clusters obtained from partitioning an originally larger dataset, as we
expect good clustering algorithms to recover (approximately) homogeneous communities.
We consider this scenario for K = 2 distinct populations from which observations were
drawn to make up the sample, and perform draws with ratios r ∈ {9/1, 8/2, . . . , 2/8, 1/9}
to make up the sample. For example, to form a size N = 100 sample with draw ratio 9 : 1,
we draw 90 observations from Population 1 and 10 observations from Population 2.

(6) Different sources of heterogeneity. For K = 2 distinct populations, we consider two sources
of heterogeneity, which impact the row sums of the overall sample: (i) overall differences in
frequencies across all markers; (ii) differences in frequencies across all markers, despite the
average marker frequencies for each population being roughly equal. Concretely, in category
(i), we draw marker frequencies from the P features for Population 1 and Population 2 as
described in Step 2 of the generative process reported in Subsection 3.2. In category (ii),
we draw P/2 marker frequencies for Population 1 and for Population 2 from the uniform
distribution described in Step 2, and then append these marker frequency vectors to obtain
two different length P marker frequency vectors for the two populations. For example, with
P = 10, starting from (0.42, 0.435, 0.44, 0.422, 0.421) and (0.575, 0.58, 0.572, 0.6, 0.61), we
get (0.42, 0.435, 0.44, 0.422, 0.421, 0.575, 0.58, 0.572, 0.6, 0.61) and
(0.575, 0.58, 0.572, 0.6, 0.61, 0.42, 0.435, 0.44, 0.422, 0.421) as the two final marker frequency
vectors.

To visualize the difference between the two categories, consider the two datasets below,
where the first two individuals belong to one population and the last two individuals to
another distinct population. Both datasets have differences in frequencies across all markers,
but the subsamples forming the right dataset have the same average marker frequencies
((1 + 1 + 1 + 0 + 0 + 0)/6 = 0.5).


1 1 1 0 1 1
1 1 0 1 1 1
0 0 0 0 1 0
0 0 0 1 0 0

 ;


1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1


Category (i) Category (ii)

Different sources of heterogeneity arise, for instance, often in biological datasets, where
technical variation rather than true biological signal accounts for Category (i), which means
data pre-processing is required to reduce overall differences before testing for differences that
manifest in terms of Category (ii).

(7) Column flipping. For binary or binarizable markers, where the binarization provides an
interpretation of ‘1’ and ‘0’ for the resulting binary array, this refers to erroneous or opposite
binarization, which could arise from errors executed earlier in the data processing pipeline.
We perform randomized column flipping after simulating the dataset to further simulate
erroneous binarization, and do this alongside a simulation without erroneous binarization
to analyze the impact of erroneous binarization on statistical power. We should expect no
impact of this procedure on our test, given it is invariant to the “direction” of binarization.
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An application of the multiplication principle shows that the number of sets of simulations for
power estimation is

5× 4︸ ︷︷ ︸
scenarios 1-2

× (4 + 9 + 9 + 1 + 1)︸ ︷︷ ︸
scenarios 3-7

× 3︸︷︷︸
value of P

× 2︸︷︷︸
test choice

= 2880.

We find that our test demonstrates robustness to uneven sampling (see Figures S5, S8 and S11).
For example, for a small number of features P = 10 (Figure S5), when populations are sufficiently
far apart, statistical power on an unevenly sampled dataset is no lower than 50% of the maximum
power estimated for an evenly sampled dataset. Moreover, when the sample size is large enough,
this ratio increases to 80%. In comparison, the TW test sees a drop in power from 1.00 to less than
0.4 for a large sample size N = 500.

We also find that the power of our test never falls below the nominal significance level α at which
statistical power β is estimated. This is true across all sample sizes N , numbers of features P , and
non-null scenarios considered. In comparison, the power of the TW test falls below α, typically
when P or N is small, or when the dataset is unevenly sampled, or when the populations from
which observations are drawn are very close to each other. (See Figures S3-S11.)

Figure S12 illustrates our two main findings in the case of uneven sampling, where violin plots
of statistical powers are compared between our test and the TW test across varying numbers of
features P and degrees of evenness. Degree of evenness is measured by the binary Shannon entropy
of the empirical frequencies of each sampled population included in the dataset (see Scenario 4 of
Table 1); a higher quantity means more evenness. Figure S12 shows that the power of our test
always lies to the right of the nominal significance level and also stochastically dominates the power
of the TW test in extremely unevenly sampled datasets.

H.3 Area under the receiver-operating curve (AUROC)

In Section 3.3 of the Main Text we report that 4752 AUROCs are computed. We show how we
arrive at this number. First, we restrict pairs of sample sizes and feature dimensionality (N,P ) ∈
{10, 50, 100} × {10, 100, 1000}, since we may only find null and non-null models that generate
datasets sharing such dimensionalities. Second, of any such pair, there are 4 non-null scenarios
corresponding to Multiple Populations (Scenario 3), Different Sources of Heterogeneity (Scenario
6), and Column Flipping versus Normal (Scenario 7); 9 non-null scenarios corresponding to Sparsity
of Discerning Features (Scenario 4); and another 9 non-null scenarios corresponding to Uneven
Sampling (Scenario 5). Third, of any such pair, there are 3 null scenarios corresponding to low
frequencies (“sparse”), varying frequencies (“regular”) and high frequencies (“dense”). Finally,
there are 4 choices of hyperparameter ε controlling the Closeness of Population Features (Scenario
2), and 2 choices of tests to evaluate AUROCs for.

An application of the multiplication principle shows that the number of AUROCs is

3× 3︸ ︷︷ ︸
(N,P ) pairs

× (4 + 9 + 9)︸ ︷︷ ︸
non-nulls

× 3︸︷︷︸
nulls

× 4︸︷︷︸
closeness hyperparameter

× 2︸︷︷︸
test choice

= 4752.

References

Billera, L. J. et al. (2001) Geometry of the space of phylogenetic trees. Advances in Applied
Mathematics, 27, 733–767.

Diaconis, P. and Sturmfels, B. (1998) Algebraic algorithms for sampling from conditional distribu-
tions. Annals of Statistics, 26, 363–397.

Hemerik, J. and Goeman, J. (2018) Exact testing with random permutations. Test, 27, 811–825.
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Supplementary Figures
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Figure S1. Plate diagram for our generative process. Specifically, the generative mechanism for observa-
tions drawn from an arbitrary population k (1 6 k 6 K) is shown. Note that the endpoints of the uniform

distribution (i.e., the quantities ak and bk of the supporting interval [ak, bk] from which θ
(k)
j is uniformly

drawn) depend on k.
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Figure S2. FPR of our test versus TW at significance threshold α = 0.05, plotted across both numbers of
features P (10, 100 or 1000) and marker frequency scenarios. The solid lines connect Monte Carlo estimates
of the FPR at each value of N , with red corresponding to our test and blue corresponding to TW.
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Figure S3. The impact of various scenarios on the statistical power of V and TW tests, with P = 10
features considered.
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Figure S4. The impact of the sparsity of discerning features on the statistical power of V and TW tests,
with P = 10 features considered.
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Figure S5. The impact of uneven sampling on the statistical power of V and TW tests, with P = 10
features considered.
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Figure S6. The impact of various scenarios on the statistical power of V and TW tests, with P = 100
features considered.
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Figure S7. The impact of the sparsity of discerning features on the statistical power of V and TW tests,
with P = 100 features considered.
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Figure S8. The impact of uneven sampling on the statistical power of V and TW tests, with P = 100
features considered.
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Figure S9. The impact of various scenarios on the statistical power of V and TW tests, with P = 1000
features considered.
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Figure S10. The impact of the sparsity of discerning features on the statistical power of V and TW tests,
with P = 1000 features considered.
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Figure S11. The impact of uneven sampling on the statistical power of V and TW tests, with P = 1000
features considered.
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Figure S12. Comparison of statistical power between our test and the TW test, across all simulations
involving unevenly sampled datasets. Violin plots show kernel density estimates of power. Dashed black
line has x-intercept 0.05, which is the nominal significance level α at which statistical powers are computed.
For each (UNEVENNESS, P ) setting we report Mann-Whitney-Wilcoxon test p-values comparing the two
distribution of powers.
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Figure S13. AUROC of each classifier based on pairing a null model from our FPR control simulations
with a non-null model from our power estimation simulations covering Scenarios (3), (6) and (7) on top
of the ”normal” scenario. Each AUROC is represented by a point, coloured by the test used, and shaped
according to the number of features P involved. Coloured diamonds show the average AUROC across all
pairs (N,P ) considered for the corresponding test in the particular configuration of (SCENARIO, ε).
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Figure S14. AUROC of each classifier based on pairing a null model from our FPR control simulations with
a non-null model from our power estimation simulations covering Scenario 4 (sparsity of discerning features).
Each AUROC is represented by a point, coloured by the test used, and shaped according to the number of
features P involved. Coloured diamonds show the average AUROC across all pairs (N,P ) considered for the
corresponding test in the particular configuration of (SPARSE, ε).
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Figure S15. AUROC of each classifier based on pairing a null model from our FPR control simulations
with a non-null model from our power estimation simulations covering Scenario 5 (uneven sampling). Each
AUROC is represented by a point, coloured by the test used, and shaped according to the number of
features P involved. Coloured diamonds show the average AUROC across all pairs (N,P ) considered for the
corresponding test in the particular configuration of (EVENNESS, ε).
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Figure S16. Probability-probability plots of the permutation null distribution, Fperm, against the para-
metric bootstrap. A. P = 10. B. P = 100. C. P = 1000.

Figure S17. Probability-probability plots of the permutation null distribution, Fperm, against the large N ,
large P approximation. A. N = 10. B. N = 50. C. N = 100. D. N = 500. E. N = 1000.
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Figure S18. Monte Carlo estimates of FPR of the approximation to the block permutation null distribution
on datasets simulated under an autoregressive model (AR) and a population-genetic coalescent model. Error
bars denote 95% confidence intervals.
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