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A Simulation Details for Recombination Hotspot Testing

A.1 Set-up

We encode population genetic data x as follows. Let xS be the binary n × d matrix with 0 and 1
as the common and rare nucleotide variant, respectively, where n is the number of sequences, and
d is the number of SNPs. Let xD be the n × d matrix storing the distances between neighboring
SNPs, so each row of xD is identical and the rightmost distance is set to 0. Define x as the n× d× 2
tensor obtained by stacking xS and xD. To improve the conditioning of the optimization problem,
the distances are normalized such that they are on the order of [0, 1].

The standard generative model for such data is the coalescent, a stochastic process describing the
distribution over genealogies relating samples from a population of individuals. The coalescent with
recombination [1, 2] extends this model to describe the joint distribution of genealogies along the
chromosome. The recombination rate between two DNA locations tunes the correlation between their
corresponding genealogies. Population genetic data derived from the coalescent obeys translation
invariance along a sequence conditioned on local recombination and mutation rates which are also
translation invariant. In order to take full advantage of parameter sharing, our chosen architecture is
given by a convolutional neural network with tied weights for each row preceding the exchangeable
layer, which is in turn followed by a fully connected neural network.

A.2 Recombination Hotspot Testing

Recombination hotspots are short regions of the genome (≈ 2 kb in humans) with high recombination
rate relative to the background recombination rate. To apply our framework to the hotspot detection
problem, we define the overall graphical model in Figure 1. The shaded nodes represent the observed
variables. Denote w as a small window (typically < 25 kb) of the genome such that Xw is the
population genetic data in that window, and X−w is the rest. Similarly, let ρw and ρ−w be the
recombination map in the window and outside of the window, respectively. While ρw and ρ−w have a
weak dependence (dashed line) onX−w andXw respectively, this dependence decreases rapidly and is
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ignored for simplicity. More precisely, weak dependence means that P (ρw, X−w) ≈ P (ρw)P (X−w)
as shown in Equation 3.1 of [3] via a Taylor expansion argument. The intuition for this is that ρ tunes
the correlation between neighboring sites so each site is effectively independent of recombination
rates at distal sites.

Let q be the relative proportion of the sample possessing each mutation, and η be the population size
function. Intuitively, η determines the rate at which the genealogies (can be thought of as binary
trees) branch. q is a summary statistic of η which we observe that allows us to fix the population size
in an empirical Bayes style throughout training for simplicity using SMC++.

Let θ be the mutation rate and h be the indicator function for whether the window defines a hotspot.
Conditioned on q, η is only weakly dependent on Xw.

We define our prior as follows. We sample the hotspot indicator variable h ∼ Bernoulli(0.5) and
the local recombination maps ρw ∼ P̂ (ρw | h) from the released fine-scale recombination maps of
HapMap [4]. The human mutation rate is fixed to that experimentally found in [5]. Since SMC++ is
robust to changes in any small fixed window, inferring η̂ from X has minimal dependence on ρw.

To test for recombination hotspots:

1. Simulate a batch of h and ρw from the prior and Xw from msprime [6] given h and ρw.

2. Feed a batch of training examples into the network to learn P(h | Xw).

3. Repeat until convergence or for a fixed number of iterations.

4. At test time, slide along the genome to infer posteriors over h.

X−w Xw

θ η q ρ−w ρw

h

Figure 1: Graphical model of recombination hotspot inference: θ is the mutation rate, η the population
size function, q the relative proportion of the sample possessing each mutation, ρ−w the recombination
rate function outside of the window, ρw the recombination rate function inside the window, h whether
the window is a hotspot, X−w the population genetic data outside of the window, and Xw the data
inside the window. The dashed line signifies that, conditioned on q, η is weakly dependent on Xw for
suitably small w, and ρ−w and ρw are only weakly dependent on Xw and X−w.

B Statistical Properties of Our Method: Proofs

Proof of Proposition 1 By the Universal Approximation Theorem and the interpretation of
simulation-on-the-fly as minimizing the expected KL divergence between the population risk and the
neural network, the training procedure minimizes the objective function for any x, ε > 0, δ > 0, we
can pick a H > H0, and N > N0 such that,

min
w

Ex

[
KL

(
P(θ | x)

∥∥ P(N)
DL (θ | x;w, H)

)]
< ε.

Let w∗ be a minimizer of the above expectation. By Markov’s inequality, we get for every x and
δ > 0 such that for all H > H0 and N > N0

KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x;w∗, H)

)
< δ

with probability at least 1− ε
δ .
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Proof of Corollary 1 As above, for any x, ε > 0, δ > 0, there exists a H > H0, and N > N0

such that
min
w

Ex

[
KL

(
P(θ | x)

∥∥ P(N)
DL (θ | x;w, H)

)]
< ε.

Furthermore, for all x, the KL is bounded at the minimizer since P(x) > 0 for all x resulting in the
following bound

KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x;w∗, H)

)
< max

x

ε

P(x)

independent of x. Thus, the training procedure results in a function mapping that uniformly converges
to the posterior P(θ | x).

C LDhot details

The most widely-used technique for recombination hotspot testing is LDhot as described in [7].
The method performs a generalized composite likelihood ratio test using the two-locus composite
likelihood based on [8] and [9]. The composite two-locus likelihood approximates the joint likelihood
of a window of SNPs w by a product of pairwise likelihoods

CL(ρ | x) =
∏

1≤|i−j|≤z

L(ρij | xij),

where Xij denotes the data restricted only to SNPs i and j, and ρij denotes the recombination rate
between those sites. Only SNPs within some distance, say z = 50, are considered.

Two-locus likelihoods are computed via an importance sampling scheme under a constant population
size (η = 1) as in [9]. The likelihood ratio test uses a null model of a constant recombination rate and
an alternative model of a differing recombination rate in the center of the window under consideration:

Λ = −2 log

(
supρhot,ρbg

CL(ρhot, ρbg | X)

supρconst
CL(ρconst | X)

)
.

The two-locus likelihood can only be applied to a single population with constant population size,
constant mutation rate, and without natural selection. Furthermore, the two-locus likelihood is an
uncalibrated approximation of the true joint likelihood. In addition, [10] and [7] performed simulation
studies showing that LDhot has good power but their simulation scenarios were unrealistic because
its null hypothesis leads to a comparison against a biologically unrealistic flat background rate. In
order to fairly compare our likelihood-free approach against the composite likelihood-based method
in realistic human settings, we extended the LDhot methodology to apply to a piecewise constant
population sizes using two-locus likelihoods computed by the software LDpop [11]. Unlike the
method described in [10], our implementation of LDhot uses windows defined in terms of SNPs
rather than physical distance in order to measure accuracy via ROC curves, since the likelihood ratio
test is a function of number of SNPs. Note that computing the approximate two-locus likelihoods for
a grid of recombination values is at least O(n3), which could be prohibitive for large sample sizes.

D Additional Experiments

Regularization The simulation-on-the-fly paradigm obviates the need for modern regularization
techniques such as dropout. This is due to the fact that there is no notion of overfitting since each
training point is used only once and a large number of examples are drawn from the population
distribution. As shown in Figure 2(left), dropout does not help improve the accuracy of our method
and, in fact, leads to a minor decrease in performance. As expected, directly optimizing the population
risk minimizer circumvents the problem of overfitting.

Phasing Often times in sequencing data it is difficult to separate the DNA contributions from
each chromosome (we have two — one from each parent). Thus, data is typically expressed as
a sum so that x ∈ {0, 1, 2}d. Most population genetic methods require the data to be separated,
referred to as phased. Phasing algorithms can often introduce significant bias into downstream
inference, so methods that do not require phased data are particularly useful. Our approach can
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Figure 2: (Left)A comparison of different dropout rates. Dropout has a minimal (or slightly negative)
effect on test accuracy under the simulation-on-the-fly regime. (Right)Accuracy comparison between
unphased and phased data.

flexibly perform inference directly on phased or unphased data, the latter being a challenge for
model-based approaches. Inference directly on unphased data allows us to implicitly integrate over
possible phasings, reducing the bias introduced by fixing the data to a single phasing. In the case of
recombination hotspots, we have found only a minor decrease in accuracy for small sample sizes
corresponding to the reduction in statistical signal when inference is performed on unphased data. We
quantified the effect of having accurately phased (haploid) data in comparison to unphased(diploid)
data. Specifically, inference was run by simulating haploid data and randomly pairing them to
construct diploid data such that the height of the diploid matrix is half that of the haploid matrix. We
ran the experiment for n = 16, 32, 64 as shown in Figure 2(right) and found that the our method is
robust, remaining highly accurate for unphased data.
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