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Bayesian estimation of gene constraint from 
an evolutionary model with gene features

Tony Zeng    1,4 , Jeffrey P. Spence    1,4 , Hakhamanesh Mostafavi    1,2 & 
Jonathan K. Pritchard    1,3 

Measures of selective constraint on genes have been used for many 
applications, including clinical interpretation of rare coding variants, 
disease gene discovery and studies of genome evolution. However, widely 
used metrics are severely underpowered at detecting constraints for the 
shortest ~25% of genes, potentially causing important pathogenic mutations 
to be overlooked. Here we developed a framework combining a population 
genetics model with machine learning on gene features to enable accurate  
inference of an interpretable constraint metric, shet. Our estimates 
outperform existing metrics for prioritizing genes important for cell 
essentiality, human disease and other phenotypes, especially for short 
genes. Our estimates of selective constraint should have wide utility for 
characterizing genes relevant to human disease. Finally, our inference 
framework, GeneBayes, provides a flexible platform that can improve the 
estimation of many gene-level properties, such as rare variant burden or 
gene expression differences.

Identifying the genes important for disease and fitness is a central goal 
in human genetics. One particularly useful measure of importance is 
gene constraint, or how much natural selection limits the population 
frequencies of deleterious variants1–4. If a gene is constrained, then 
selection will act to remove variants that diminish gene function from 
the population, such as loss-of-function (LOF) variants. Specifically, 
LOFs in constrained genes reduce fitness, such that they decrease in 
frequency or vanish from the population over time.

In the last decade, large exome sequencing studies have made it 
possible to use LOFs, such as protein truncating or splice-disrupting 
variants, to calculate metrics of constraint for thousands of genes. 
Constraint has been used to prioritize de novo and rare variants for 
clinical follow-up5,6, predict the toxicity of drugs7, link genome-wide 
association studies (GWAS) hits to genes8 and characterize transcrip-
tional regulation9,10, among many other applications.

Gene-level constraint metrics typically estimate the depletion in 
the number of LOFs observed per gene or estimate the fitness decrease 
from an LOF using a population genetics model that links fitness to 
the observed LOF frequencies. Specifically, in one line of research, the 

number of observed unique LOFs is compared to the expected number 
under a model of no selective constraint. This approach has led to the 
widely used metrics probability of being LOF intolerant (pLI)11 and LOF 
observed/expected upper bound fraction (LOEUF)12.

While pLI and LOEUF have proved useful for identifying genes 
intolerant to LOF mutations, they have important limitations3. First, 
they are uninterpretable in that they are only loosely related to the 
fitness consequences of LOFs. Their relationship with natural selec-
tion depends on the study’s sample size and other technical factors3. 
Second, the lack of an explicit population genetics model makes it 
impossible to compare values of pLI or LOEUF to the strength of selec-
tion on variants other than LOFs3,4.

Another line of research has solved these issues of interpret-
ability by estimating the fitness reduction for heterozygous carriers 
of an LOF in any given gene1,2,4. Throughout, we will adopt the nota-
tion discussed in ref. 1 and refer to this reduction in fitness as shet

2, 
although the same population genetic quantity has been referred to as 
hs4,13. In ref. 1, a deterministic approximation was used to estimate shet, 
which was relaxed to incorporate the effects of genetic drift in ref. 2.  

Received: 2 June 2023

Accepted: 29 May 2024

Published online: xx xx xxxx

 Check for updates

1Department of Genetics, Stanford University, Stanford, CA, USA. 2Department of Population Health, New York University, New York,   
NY, USA. 3Department of Biology, Stanford University, Stanford, CA, USA. 4These authors contributed equally: Tony Zeng, Jeffrey P. Spence.  

 e-mail: tkzeng@stanford.edu; jspence@stanford.edu; pritch@stanford.edu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01820-9
http://orcid.org/0000-0002-6509-9879
http://orcid.org/0000-0002-3199-1447
http://orcid.org/0000-0002-1060-2844
http://orcid.org/0000-0002-8828-5236
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-024-01820-9&domain=pdf
mailto:tkzeng@stanford.edu
mailto:jspence@stanford.edu
mailto:pritch@stanford.edu


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01820-9

Second, we use a model from population genetics to relate shet 
to the observed LOF data (Fig. 1c, right), allowing us to fit the prior 
by maximizing the likelihood of the LOF data. Specifically, we use the 
discrete-time Wright–Fisher model with genic selection, a standard 
model in population genetics that accounts for mutation and genetic 
drift13,17. In our model, shet is the reduction in fitness per copy of an 
LOF (Supplementary Note). We assume that the average number of 
offspring an individual has is proportional to 1, 1 − shet or 1 − 2shet if they 
carry zero, one or two copies of the LOF, respectively. Likelihoods are 
computed using methods described in a companion paper15.

While previous methods used either the number of unique LOFs 
or the sum of the frequencies of all LOFs in a gene, our likelihood 
models the frequency of each individual LOF variant. We used LOF 
frequencies from the gnomAD consortium (v2.1), which consists of 
exome sequences from ~125,000 individuals for 19,071 protein-coding 
genes12.

Combining these two components—the learned priors and the 
likelihood of the LOF data—we obtained posterior distributions over shet 
for every gene (Data availability; Supplementary Table 1). Throughout, 
we use the posterior mean value of shet for each gene as a point estimate.

Factors affecting the estimation of shet

First, we explored how LOF frequency and mutation rate relate to shet 
in our population genetics model (Fig. 2a). Invariant sites with high 
mutation rates are indicative of strong selection (shet > 10−2), consistent 
with ref. 18, while invariant sites with low mutation rates are consistent 
with essentially any value of shet for the demographic model considered 
here. Regardless of mutation rate, singletons are consistent with most 
values of shet but can rule out extremely strong selection, and variants 
observed at a frequency of >10% rule out even moderately strong selec-
tion (shet > 10−3).

To assess how informative gene features are about shet, we trained 
our model on a subset of genes and evaluated the model on held-out 
genes (Fig. 2b; Methods). We computed the Spearman correlation 
between shet estimates from the prior and shet estimates from the LOF 
data only. The correlation is high and comparable between train and 
test sets (Spearman ρ = 0.80 and 0.77, respectively), indicating the gene 
features alone are highly predictive of shet. Furthermore, posteriors 
are substantially more concentrated for most genes when using gene 
features (Fig. 2c).

Some of our features, such as the degree of constraint estimated 
from missense variants19, may correlate with LOF variation in ways 
that don’t reflect differences in selection. However, these features 
do not majorly bias our results (Extended Data Fig. 1a and Supple-
mentary Note). Given that demography has an important role in 
the likelihood, we further wanted to ensure that our results were 
robust to the misspecification of the demography. To do this, we 
trained models on the non-Finnish European (NFE) and the non-NFE 
subsets of gnomAD (~67,000 and ~56,000 individuals, respectively), 
and found the resulting shet estimates to be highly concordant with 
estimates from the full gnomAD dataset (Extended Data Fig. 2 and 
Supplementary Note).

Next, we compared our estimates of shet to LOEUF and to selection 
coefficients estimated in ref. 4 (Fig. 2d). To facilitate comparison, we 
use the posterior modes of shet reported in ref. 4 as point estimates, but 
note that study in ref. 4 emphasizes the value of using full posterior 
distributions. While the correlation between our estimates is high for 
genes with sufficient LOFs (for genes with more LOFs than the median, 
Spearman ρ with LOEUF = 0.94; ρ with shet (from ref. 4) = 0.87), it drops 
for genes with few expected LOFs (for genes with fewer LOFs than the 
median, Spearman ρ with LOEUF = 0.71; ρ with shet (from ref. 4) = 0.69).

We found that many genes are considered constrained by shet 
but not by LOEUF, which is designed to be highly conservative. In 
Table 1, we list 15 examples in the top ~15% most constrained genes 
by shet but in the ~75% least constrained genes by LOEUF (Methods). 

This model was subsequently extended in ref. 4, with a focus on uncer-
tainty estimation and the interpretability of shet.

A major issue for most previous methods is that thousands of 
genes have few expected unique LOFs under neutrality, as they have 
short protein-coding sequences. When LOEUF was introduced12, it 
was underpowered for the ~25% of genes with fewer than ten expected 
unique LOFs. For the same reason, other methods are severely under-
powered for this bottom quartile of genes, which we refer to as having 
‘few expected LOFs’.

Here we present an approach that can accurately estimate shet even 
for genes with few expected LOFs while maintaining the interpretability 
of previous population-genetics-based estimates1,2,4.

Our approach has two main technical innovations. First, we use 
a flexible population genetics model of LOF allele frequencies. Previ-
ous methods have either only modeled the number of unique LOFs, 
throwing away frequency information11,12,14, or considered the sum of 
LOF frequencies across the gene1,2,4, an approach that is not robust to 
misannotated LOFs—variants that have been annotated as LOFs but do 
not abrogate gene function. In contrast to previous approaches, we 
model the frequencies of individual LOF variants, addressing both limi-
tations. Our approach uses the computational machinery described in 
a companion paper15 to accurately obtain the likelihood of observing 
an LOF at a given frequency.

Second, our approach uses thousands of gene features, including 
gene expression patterns, protein structure information and evolu-
tionary constraint, to improve estimates for genes with few expected 
LOFs. By using these features, we can share information across similar 
genes. Intuitively, this allows us to improve estimates for genes with 
few expected LOFs by leveraging information from genes with similar 
features that do have sufficient LOF data. Our approach is similar to 
that of DeepLOF14, which uses gene features in a deep learning model 
to improve the estimation of gene constraint, but DeepLOF scores face 
the same issues with interpretability as pLI and LOEUF.

We applied our method to gnomAD (v2.1), a large exome sequenc-
ing cohort12. Our estimates of shet are substantially more predictive 
than previous metrics at prioritizing essential and disease-associated 
genes. We additionally use shet to highlight differences in selection on 
different categories of genes and consider shet in the context of selec-
tion on variants beyond LOFs.

Our approach, GeneBayes, is extremely flexible and can be applied 
to improve the estimation of numerous gene properties beyond shet. Our 
implementation is available at https://github.com/tkzeng/GeneBayes.

Results
Model overview
Using LOF data to infer gene constraint is challenging for genes with 
few expected LOFs, with metrics like LOEUF interpreting nearly all such 
genes as unconstrained (Fig. 1a,b). We hypothesized that it would be 
possible to improve estimation by using auxiliary information that may 
be predictive of LOF constraint, including gene expression patterns 
across tissues, protein structure and evolutionary conservation. By 
pooling information across groups of similar genes, constraint esti-
mated for genes with sufficient LOF data may help improve estimation 
for underpowered genes.

However, while the frequencies of LOFs can be related to shet 
through models from population genetics1,2,4, we lack an understand-
ing of how other gene features relate to constraint a priori.

To address this problem, we developed a flexible empirical Bayes 
framework, GeneBayes, that learns the relationship between gene 
features and shet (Fig. 1c). Our model consists of two main components. 
First, we model the prior on shet for each gene as a function of its gene 
features (Fig. 1c, left). Specifically, we train gradient-boosted trees 
using NGBoost16 to predict the parameters of each gene’s prior dis-
tribution from its features, such as its expression level across tissues 
(Methods; see Supplementary Note for a full list).

http://www.nature.com/naturegenetics
https://github.com/tkzeng/GeneBayes
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One notable example is a set of 18 ribosomal protein genes for which 
heterozygous disruption causes Diamond–Blackfan anemia20 (Sup-
plementary Table 2). Sixteen of the genes are considered strongly 

constrained by shet. In contrast, only six genes are considered con-
strained by LOEUF (LOEUF < 0.35), as many of these genes have few 
expected unique LOFs.
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Fig. 1 | Limitations of LOEUF and schematic representation for inferring 
shet using GeneBayes. a, Stacked histogram of the expected number of unique 
LOFs per gene, with the distribution for genes considered unconstrained 
by LOEUF colored in red and those considered constrained colored in blue. 
Genes with LOEUF < 0.35 are considered constrained, while all other genes are 
unconstrained (Methods). The plot is truncated on the x axis at 100 expected 
LOFs. b, Scatterplot of the observed against the expected number of unique LOFs 

per gene. The dashed line denotes observed = expected. Each point is a gene, 
colored by its LOEUF score; genes with LOEUF > 1 are colored as LOEUF = 1.  
c, Schematic representation for estimating shet using GeneBayes, highlighting the 
major components of the model: prior (blue boxes) and likelihood (red boxes). 
Parameters of the prior are learned by maximizing the likelihood (red arrow). 
Combining the prior and likelihood produces posteriors over shet (purple box). 
See Methods for details. The figure is created with BioRender.com.
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Next, we explored a few examples to understand the differences 
between our shet estimates and other measures of constraint. RTP4 and 
NDP have few expected LOFs, and their likelihoods are consistent with 
any level of constraint (Fig. 2e). Due to the high degree of uncertainty, 
LOEUF and the shet point estimates from ref. 4 are uninformative, provid-
ing similar estimates for the two genes (Fig. 2d). In contrast, by using 

gene features, our posterior distributions of shet indicate that NDP is 
strongly constrained but RTP4 is not, consistent with the observation 
that hemizygous LOFs in NDP cause Norrie disease21.

Unlike estimates of shet, LOEUF further ignores information 
about allele frequencies by considering only the number of unique 
LOFs. For example, AARD and TWIST1 have almost the same number 
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Fig. 2 | Factors that contribute to our estimates of shet. a, Likelihood curves 
for different allele frequencies (f) at sites with high mutation rates (typical of 
methylated CpGs; left) and low mutation rates (typical of transversions; right). 
Blue, orange, green and red lines correspond to invariant, singleton, f = 0.001 and 
f = 0.1 sites, respectively. b, Scatterplot of shet estimated from LOF data (y axis; 
posterior mean from a model without features) against the prior’s predictions 
of shet (x axis; mean of learned prior). Dashed line denotes y = x. Each point is 
a gene, colored by the expected number of LOFs. c, Comparison of posterior 
distributions of shet (95% credible intervals) from a model with (blue lines) and 
without (orange lines) gene features. Genes are ordered by their posterior mean 

in the model with gene features. d, Top: scatterplot of LOEUF (y axis) and our shet 
estimates (x axis; posterior mean). Each point is a gene, colored by the expected 
number of LOFs. Bottom: scatterplot of shet estimates from ref. 4 (y axis; posterior 
mode) and our shet estimates (x axis; posterior mean). Numbered points refer 
to genes in e and f. e, RTP4 and NDP are two examples of genes where the gene 
features substantially affect the posterior. We plot their posterior distributions 
(blue) and likelihoods (orange; rescaled so that the area under the curve = 1).  
f, AARD and TWIST1 are two examples of genes with the same LOEUF but different 
shet. Posteriors and likelihoods are plotted as in e.
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of observed and expected unique LOFs, so LOEUF is similar for both. 
However, AARD’s observed LOF is ~40× more frequent than that  
of TWIST1. Consequently, the likelihood rules out the possibility of 
strong constraint for AARD (Fig. 2f), causing the two genes to differ in 
their estimated shet (Fig. 2d).

In contrast to AARD, TWIST1 has a posterior mean shet of 0.11 when 
using gene features, indicating very strong selection. Consistent with 
this, TWIST1 encodes a transcription factor critical for the specifica-
tion of the cranial mesoderm, and heterozygous LOFs in the gene are 
associated with Saethre–Chotzen syndrome22,23.

We provide additional examples of genes with varying numbers 
of expected LOFs in Extended Data Fig. 3. As expected, genes with 
higher numbers of expected LOFs generally have greater concordance 
between their likelihoods and posterior distributions.

Using shet to prioritize phenotypically important genes
To assess the accuracy of our shet estimates and evaluate their ability to 
prioritize genes, we first used these estimates to classify genes essential 
for the survival of human cells in vitro. Genome-wide CRISPR growth 
screens have quantified the effects of gene knockouts on cell survival 
or proliferation24,25. We find that our estimates of shet outperform other 
constraint metrics at classifying essential genes (Fig. 3a (left); bootstrap 
P < 7 × 10−7 for pairwise differences in AUPRC between our estimates and 
other metrics). The difference is largest for genes with few expected 
LOFs (Fig. 3a (right)). Our performance gains remain even when com-
pared to LOEUF computed using gnomAD (v4), which contains roughly 
6× as many individuals (Extended Data Fig. 4a), consistent with our 
companion work demonstrating the limited benefits of larger sample 
size for most genes15. In addition, our estimates of shet outperform other 
metrics at classifying nonessential genes (Extended Data Fig. 4b).

DeepLOF14, the only other method that combines information 
from both LOF data and gene features, outperforms methods that rely 
exclusively on LOF data. However, our method outperforms DeepLOF, 
likely because DeepLOF considers only the number of unique LOFs, 
discarding frequency information.

Next, we performed further comparisons of our estimates of shet 
against LOEUF, as LOEUF and its predecessor pLI are extremely popular 
metrics of constraint.

In classifying curated developmental disorder genes26, we find 
that shet outperforms LOEUF (Fig. 3b; bootstrap P = 5 × 10−20 for the 
difference in AUPRC) and performs well compared to additional con-
straint metrics (Extended Data Fig. 4c). The performance of our shet 
estimates is not strongly dependent on any individually important 
features (Extended Data Fig. 1b,c). In addition, shet outperforms LOEUF 
even for genes with sufficient expected LOFs, although the measures 
become more concordant (Extended Data Fig. 5).

We further considered a broader range of phenotypic abnormali-
ties annotated in the Human Phenotype Ontology (HPO)27. For each 
HPO term, we calculated the enrichment of the 10% most constrained 
genes and the depletion of the 10% least constrained genes, ranked 
using shet or LOEUF. Genes considered constrained by shet are more 
enriched in HPO terms than genes considered constrained by LOEUF 
(Fig. 3c, left). Additionally, genes considered unconstrained by shet are 
more depleted in HPO terms than genes considered constrained by 
LOEUF (Fig. 3c, right).

X-linked inheritance is one of the terms with the largest enrichment 
of constrained genes (6.7-fold enrichment for shet and 4.1-fold enrich-
ment for LOEUF). The ability of shet to prioritize X-linked genes may 
prove particularly useful, as the reduced number of X chromosomes 
in a cohort with males limits the power of population-scale sequencing 
alone to detect constraint on X chromosome genes4.

We next assessed if de novo disease-associated variants are 
enriched in constrained genes, similar to the analyses in refs. 4,5. Using 
data from 31,058 trios, we calculated for each gene the enrichment of 
de novo missense and LOF mutations in offspring with developmental 
disorders (DDs) relative to unaffected parents5. We found that for 
both classes of variants, enrichment is higher for genes considered 
constrained by shet (Fig. 3d). Consistent with previous findings, the 
excess burden of de novo variants is predominantly in highly con-
strained genes (Fig. 3d). Notably, this difference in enrichment remains 

Table 1 | OMIM genes constrained by shet but not by LOEUF

Genes shet LOEUF Obs. Exp. Conditions and references

RPS15Aa 0.68 0.56 0 5.4 Diamond–Blackfan anemia: red blood cell aplasia resulting in growth, craniofacial and other congenital defects20

DCX 0.28 0.62 3 12.6 Lissencephaly: migrational arrest of neurons resulting in mental retardation and seizures58

UBE2A 0.28 0.54 0 5.6 Intellectual disorder, Nascimento type: intellectual disability characterized by dysmorphic features59

PQBP1 0.28 0.50 1 9.5 Renpenning syndrome: mental retardation with short stature and a small head size60

NAA10 0.28 0.52 1 9.1 Syndromic microphthalmia: missing or abnormally small eyes from birth61

SOX3 0.22 0.86 1 5.5 Intellectual disorder and isolated growth hormone deficiency: impaired fetal growth and intellectual development62

NDP 0.20 0.88 0 3.4 Norrie disease: retinal dystrophy resulting in early childhood blindness, mental disorders and deafness21

EIF5A 0.19 0.54 1 8.7 Faundes–Banka syndrome: developmental delay, microcephaly and facial dysmorphisms63

CDKN1C 0.19 0.53 0 5.7 Beckwith–Wiedemann syndrome: pediatric overgrowth with predisposition to tumor development64

BCAP31 0.15 0.65 2 9.7 Deafness, dystonia and cerebral hypomyelination: motor and intellectual disabilities, with deafness and involuntary 
muscle contraction65

SOX2 0.14 0.57 1 8.3 Syndromic microphthalmia: missing or abnormally small eyes from birth66

SH2D1A 0.14 0.96 1 4.9 Lymphoproliferative syndrome: immunodeficiency characterized by severe immune dysregulation after viral 
infection67

GATA4 0.12 0.53 3 14.7 Atrial septal defect: congenital heart defect resulting in a hole between the atria68

TWIST1 0.11 1.1 1 4.5 Saethre–Chotzen syndrome: craniosynostosis, facial dysmorphism and hand and foot abnormalities22,23

TAFAZZIN 0.11 0.49 2 13.0 Barth syndrome: disorder in lipid metabolism characterized by heart, muscle, immune and growth defects69

Mutations that disrupt the functions of these genes are associated with Mendelian diseases in the OMIM database70. Genes are ordered by shet (posterior mean). Obs. and Exp. are the 
unique number of observed and expected LOFs, respectively, in the gnomAD (v2.1) release we analyzed. These genes were chosen from 301 genes that had shet > 0.1 but were not in the  
most constrained LOEUF quartile. This includes 71 of 3,045 genes with pathogenic ClinVar variants that fall outside the most constrained LOEUF quartile12. aRPS15A is associated with 
Diamond–Blackfan anemia along with 12 other genes considered constrained by shet but not by LOEUF (Supplementary Table 2), with 9 of the 12 genes falling outside the most constrained 
quartile by LOEUF.

http://www.nature.com/naturegenetics
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after removing known DD genes (Extended Data Fig. 4d). Together, 
these results indicate that shet may facilitate the discovery of new  
DD genes5.

In addition to rare de novo disease-associated variants, we find 
that common variant heritability computed using stratified linkage 
disequilibrium (LD) score regression is enriched in constrained genes 
(Extended Data Fig. 4e; Methods), consistent with the findings from 
ref. 12. For 380 of 438 highly heritable traits (87%), heritability is more 

highly enriched in the decile of genes most highly constrained by shet 
than the decile most highly constrained by LOEUF.

Finally, constraint can also be related to longer-term evolution-
ary processes. For example, we expect constrained genes to maintain 
expression levels closer to their optimal values across evolutionary 
time scales. Consistent with this expectation, we find that less con-
strained genes have larger differences in expression between human 
and chimpanzee in cortical cells28, with a stronger correlation for 
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most constrained genes, ranked by shet (blue) or LOEUF (orange), or enrichment 
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ranked by shet (blue) or LOEUF (orange).
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shet than for LOEUF (Fig. 3e). Similarly, we quantified gene expres-
sion variability in human populations29 and found that variance 
decreases with increased constraint, again with a stronger correlation  
for shet (Fig. 3e).

Interpreting the relationship between gene features and shet

Our framework allows us to learn the relationship between gene fea-
tures and shet while accounting for dependencies between the features. 
To interrogate the relationship between features and shet, we divided 
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our gene features into ten distinct categories (Fig. 4a) and trained a 
separate model per category using only the features in that category. 
We found that missense constraint, gene expression patterns, evolu-
tionary conservation and protein embeddings are the most informa-
tive categories.

Next, we further divided the expression features into 24 sub-
groups, representing tissues, cell types and developmental stages 
(Supplementary Table 3). Expression patterns in the brain, digestive 
system and during development are the most predictive of constraint 
(Fig. 4b). Notably, a study that matched Mendelian disorders to tissues 
through a literature review found that a sizable plurality affects the 
brain30. Meanwhile, most of the top digestive expression features are 
also related to development (for example, ref. 31). The importance 
of developmental features is consistent with the severity of many 

developmental disorders and the expectation that selection is stronger 
on early onset phenotypes4,32.

To quantify the relationship between constraint and individual 
features, we changed the value of one feature at a time and used the 
variation in predicted shet over the feature values as the score for each 
feature (Methods). First, consistent with the top expression features, 
the top Gene Ontology (GO) features highlight developmental and 
brain-specific processes as important for selection (Fig. 4c).

Next, we analyzed network (Fig. 4d), gene regulatory (Fig. 4e) and 
gene structure (Fig. 4f) features. Protein–protein interaction (PPI) and 
gene co-expression networks have highlighted ‘hub’ genes involved in 
numerous cellular processes33,34, while genes linked to GWAS variants 
have more complex enhancer landscapes35. Consistent with these 
studies, we find that network connectedness and enhancer/promoter 
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count are positively associated with constraint (Fig. 4d,e). In addition, 
several gene structure features are predictive of constraint (Fig. 4f), 
consistent with recent work on UTRs36. Our results indicate that more 
complex genes—genes involved in more regulatory connections, more 
central to networks and with more complex gene structures—are gener-
ally more constrained.

Gene length is predictive of constraint yet also correlates with the 
amount of information in the LOF data (Fig. 4f), such that measures like 
LOEUF depend strongly on gene length. Furthermore, it correlates with 
several other gene features (Extended Data Fig. 6a–c). However, gene 
length explains at most a modest amount of the correlation between 
most features and shet (Extended Data Fig. 6d).

Contextualizing the strength of selection against gene LOF
A major benefit of shet over LOEUF and pLI is that shet has a precise, intrin-
sic meaning in terms of fitness1–4. This facilitates the comparison of 
shet between genes, populations, species and studies. More broadly, 
consequences of noncoding, missense and copy number variants can 
be understood through the same framework, as we expect such vari-
ants to also be under negative selection18 due to ubiquitous stabilizing 
selection on traits37. Quantifying differences in the selection on variants 
will deepen our understanding of the evolution and genetics of human 
traits (‘Discussion’).

To contextualize our shet estimates, we compared the distribu-
tions of shet for different gene sets (Fig. 5a) and genes (Fig. 5b) and 
analyzed them in terms of selection regimes. To define such regimes, 
we first conceptualized the selection on variants as a function of their 
effects on expression (Fig. 5c), where heterozygous LOFs usually reduce 
expression by ~50%. Under this framework, we can directly compare 
shet to selection on other variant types—for the hypothetical genes in 
Fig. 5c, a GWAS hit affecting gene 1 has a stronger selective effect than 
an LOF affecting gene 2, despite having a smaller effect on expression.

Next, we divided the range of possible shet values into four regimes 
determined by theoretical considerations38 and comparisons to other 
types of variants39,40—nearly neutral, weak selection, strong selection 
and extreme selection. LOFs in nearly neutral genes (shet < 10−4) have 
minimal effects on fitness—the frequency of such variants is dominated 
by genetic drift rather than selection38. Under the weak selection regime 
(shet from 10−4 to 10−3), gene LOFs have similar effects on fitness as typical 

GWAS hits, which usually have small or context-specific effects on gene 
expression or function39. Under the strong selection regime (shet from 
10−3 to 10−1), gene LOFs have fitness effects on par with the strongest 
selection coefficients measured for common variants, such as the 
selection estimated for adaptive mutations in LCT40. Finally, for genes 
in the extreme selection regime (shet > 10−1), LOFs have an effect on fit-
ness equivalent to a >10% chance of embryonic lethality.

Gene sets vary widely in their constraint. For example, genes 
known to be haploinsufficient for severe diseases are almost all under 
extreme selection. In contrast, genes that can tolerate homozygous 
LOFs are generally under weak selection. One notable example of such 
a gene is LPA—while high expression levels are associated with cardio-
vascular disease, low levels have minimal phenotypic consequences41,42, 
consistent with limited conservation in the sequence or gene expres-
sion of LPA across species and populations43,44.

Other gene sets have much broader distributions of shet values. For 
example, manually curated recessive genes are under weak to strong 
selection, indicating that many such genes are either not fully recessive 
or have pleiotropic effects on other traits under selection. For example, 
homozygous LOFs in PROC can cause life-threatening congenital blood 
clotting45, yet shet for PROC is nonnegligible (Fig. 5b), consistent with 
observations that heterozygous LOFs can also increase blood clotting 
and cause deep vein thrombosis46.

Discussion
Here we developed an empirical Bayes approach to accurately infer shet, 
an interpretable metric of gene constraint. Our approach uses powerful 
machine learning methods to leverage vast amounts of functional and 
evolutionary information about each gene while coupling them to a 
population genetics model.

There are two advantages of this approach. First, the additional 
data sources result in substantially better performance than LOEUF 
across tasks, from classifying essential genes to identifying pathogenic 
de novo mutations (DNMs). These improvements are especially pro-
nounced for the large fraction of genes with few expected LOFs, where 
LOF data alone are underpowered for estimating constraint.

Second, by inferring shet, our estimates of constraint are interpret-
able in terms of fitness, and we can directly compare the impact of an 
LOF across genes, populations, species and studies.
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As a selection coefficient, shet can also be directly compared to 
other selection coefficients, even for different types of variants3,4. 
Theory suggests that genes are generally close to their optimal levels 
of expression and are mainly subject to stabilizing selection37, in which 
case expression-altering variants decrease fitness, with larger per-
turbations causing greater decreases (Fig. 5c). Estimating the fitness 
consequences of other types of expression-altering variants, such as 
duplications or expression quantitative trait loci (eQTLs), will allow us 
to map the relationship between genetic variation and fitness in detail, 
deepening our understanding of the interplay of expression, complex 
traits and fitness10,39,47,48.

A recent method, DeepLOF14, uses a similar empirical Bayes 
approach, but by estimating constraint from the number of observed 
and expected unique LOFs, it inherits the same difficulties regarding 
interpretation as pLI and LOEUF, and loses information by not consider-
ing variant frequencies. Another line of work1,2, culminating in ref. 4, 
solved the issues with interpretability by directly estimating shet. Yet, 
by relying exclusively on LOFs, these estimates are underpowered for 
~25% of genes. Furthermore, by using the aggregate frequencies of all 
LOF variants, previous shet estimates1,2,4 are not robust to misannotated 
LOF variants. Our approach eliminates this tradeoff between power 
and interpretability present in existing metrics.

Similar insights that combine evolutionary modeling and 
genomic features have been used to estimate constraint on noncod-
ing variation49–52.

Our estimates of shet will be useful for many applications. For exam-
ple, by informing gene level priors, LOEUF, pLI and previous estimates 
of shet have been used to increase the power of association studies based 
on rare mutations or DNMs5,6,53. In such contexts, our shet estimates can 
be used as a drop-in replacement. Additionally, investigating highly 
constrained genes may give insights into the mechanisms by which 
cellular and organism-level phenotypes affect fitness54.

While we primarily used the posterior means of shet here, our 
approach provides the entire posterior distribution per gene, similar 
to ref. 4. In some applications, different aspects of the posterior may 
be more relevant than the mean. For example, when prioritizing rare 
variants for follow-up in a clinical setting, the posterior probability 
that shet is high enough for the variant to severely reduce fitness may 
be more relevant.

As more exomes are sequenced, one might expect that we would be 
better able to more accurately estimate shet. Indeed, for non-European 
genetic ancestry groups, larger samples may facilitate a more accurate 
estimation of ancestry-specific shet, a challenging task given the sample 
sizes available in gnomAD (v2.1). Yet, we show in a companion paper15 
that increasing the sample size for estimating LOF frequencies beyond 
~140,000 individuals (the approximate aggregate size of gnomAD 
(v2.1)) will only improve estimates slowly and provide essentially no 
additional information for the ~85% of genes with the lowest values of 
shet. By sharing information across genes, we can overcome this funda-
mental limit on how accurately we can estimate constraint.

Here we focused on estimating shet, but our empirical Bayes 
framework, GeneBayes, can be used in any setting where one has a 
model that ties a gene-level parameter to gene-level observable data 
(Supplementary Note). For example, GeneBayes can be used to find 
trait-associated genes using variants from case–control studies55,56 
or to improve the power to find differentially expressed genes in RNA 
sequencing (RNA-seq) experiments57. We provide a graphical overview 
of how GeneBayes can be applied more generally in Fig. 6. Briefly, Gen-
eBayes requires users to specify a likelihood model and the form of a 
prior distribution for their parameter of interest. Then, using empirical 
Bayes and a set of gene features, it improves the power to estimate the 
parameter by flexibly sharing information across similar genes.

In summary, we developed a powerful framework for estimating a 
broadly applicable and readily interpretable metric of constraint, shet. 
Our estimates provide a more informative ranking of gene importance 

than existing metrics, and our approach allows us to interrogate poten-
tial causes and consequences of natural selection.
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Methods
Inclusion and ethics
The study did not require any specific ethics approval. It relies on sum-
mary data from aggregated exome sequencing data made publicly 
available by gnomAD but does not use any individual-level data. Specifi-
cally, we use allele count and frequency data for predicted LOF variants 
for ancestry groups assigned by gnomAD, such as ‘NFE’. All other data 
used are also publicly available and contain no individual-level data 
(see Methods for descriptions and data sources).

Statistics and reproducibility
No preliminary statistical analyses were conducted to determine 
sample sizes. The inclusion of individuals in the summary data made 
available by gnomAD was based on criteria described in ref. 12. Fea-
ture selection, model training and model evaluation are described 
in Methods, and the code for model training is publicly available  
(Code availability).

Empirical Bayes overview
Many genes have few observed LOF variants, making it challenging to 
infer constraint without additional information. Bayesian approaches 
that specify a prior distribution for each gene can provide such infor-
mation to improve constraint estimates, but specifying prior distri-
butions is challenging as we have limited prior knowledge about the 
selection coefficients, shet. Empirical Bayes procedures allow us to learn 
a prior distribution for each gene by combining information across  
genes.

To use the information contained in the gene features, we learn 
a mapping from a gene’s features to a prior specific for that gene. We 
parameterize this mapping using gradient-boosted trees, as imple-
mented in NGBoost16. Intuitively, this approach learns a notion of 
‘similarity’ between genes based on their features and then shares 
information across similar genes to learn how shet relates to the gene 
features. This approach has two major benefits. First, by sharing infor-
mation between similar genes, it can dramatically improve the accuracy 
of the predicted shet values, particularly for genes with few expected 
LOFs. Second, by leveraging the LOF data, this approach allows us to 
learn about how the various gene features relate to fitness, which can-
not be modeled from first principles.

For a more in-depth description of our approach along with  
mathematical and implementation details, see Supplementary  
Note.

Population genetic likelihood
To model how shet relates to the frequency of individual LOF variants, we 
used the discrete-time Wright–Fisher model, with an approximation 
of diploid selection with additive fitness effects. We used a composite 
likelihood approach, assuming independence across individual LOF 
variants, to obtain gene-level likelihoods. Within this composite like-
lihood, we model each individual variant as either having a selection 
coefficient of shet with probability 1 − Pmis or having a selection coeffi-
cient of 0 with probability Pmis. That is, Pmis acts as the prior probability 
that a given variant is misannotated, and we assume that misannotated 
variants evolve neutrally regardless of the strength of selection on the 
gene. All likelihoods were computed using machinery developed in a 
companion paper15.

Our model depends on a number of parameters—a demographic 
model of past population sizes, mutation rates for each site and the 
probability of misannotation. The demographic model is taken from 
the literature71 with modifications as described in ref. 4. The mutation 
rates account for trinucleotide context as well as methylation status 
at CpGs12. Finally, we estimated the probability of misannotation from 
the data.

For additional technical details and intuition, see Supplementary 
Note.

Curation of LOF variants
We obtained annotations for the consequences of all possible 
single-nucleotide changes to the hg19 reference genome from ref. 72. 
In ref. 72, the effects of variants on protein function were predicted 
using Variant Effect Predictor (VEP; v85)73 using GENCODE (v19) gene 
annotations74 as a reference. We defined a variant as an LOF if it was 
predicted by VEP to be a splice acceptor, splice donor or stop-gain vari-
ant. In ref. 72, predicted LOFs were further annotated using LOFTEE12, 
which implements a series of filters to identify variants that may be 
misannotated (for example, LOFTEE considers predicted LOFs near 
the ends of transcripts as likely misannotations). For our analyses, we 
only kept predicted LOFs labeled as high confidence by LOFTEE, which 
are LOFs that passed all of LOFTEE’s filters.

Next, we considered potential criteria for further filtering LOFs—
cutoffs for the median exome sequencing read depth, cutoffs for the 
mean pext (proportion expressed across transcripts) score72, whether 
to exclude variants that fall in segmental duplications or regions with 
low mappability75 and whether to exclude variants flagged by LOFTEE 
as potentially problematic but that passed LOFTEE’s primary filters.

We trained models with these filters one at a time and in combi-
nation and chose the model that had the best AUPRC in classifying 
essential from nonessential genes in mice. The filters we evaluated 
and chose for the final model are reported in Supplementary Table 4. 
Because we used mouse gene essentiality data to choose the filters, we 
do not further evaluate shet on these data.

We considered genes to be essential in mice if they are het-
erozygous lethal, as determined by Karczewski et al.12 using data 
from heterozygous knockouts reported in Mouse Genome Infor-
matics76. We classify genes as nonessential if they are reported as 
Homozygous-Viable or Hemizygous-Viable by the International Mouse 
Phenotyping Consortium77 (annotations downloaded on 8 December 
2022 from https://www.ebi.ac.uk/mi/impc/essential-genes-search/).

Finally, we annotated each variant with its frequency in the 
gnomAD (v2.1.1) exomes12, a dataset of 125,748 uniformly analyzed 
exomes that were largely curated from case–control studies of common 
adult-onset diseases. gnomAD provides precomputed allele frequen-
cies for all variants that they call.

For potential LOFs that are not segregating, gnomAD does not 
release the number of individuals that were genotyped at those posi-
tions. For these sites, we used the median number of genotyped indi-
viduals at the positions for which gnomAD provides this information. 
We performed this separately on the autosomes and X chromosomes.

Data sources for the variant annotations, filters and frequencies, as 
well as additional information used to compute likelihoods, are listed 
in Supplementary Table 5.

Feature processing and selection
We compiled the following ten types of gene features from several 
sources: gene structure (for example, number of transcripts, number 
of exons and GC content), gene expression across tissues and cell lines, 
biological pathways and GO terms, PPI networks, co-expression net-
works, gene regulatory landscape (for example, number and properties 
of enhancers and promoters), conservation across species, protein 
embeddings, subcellular localization and missense constraint.

Additionally, we included an indicator variable that is 1 if the gene 
is in the nonpseudoautosomal region of the X chromosome and 0 
otherwise.

For a description of the features within each category and where 
we acquired them, see Supplementary Note.

Training and validation
We fine-tuned a set of hyperparameters for our full empirical Bayes 
approach, using the best hyperparameters from an initial feature 
selection step (see Supplementary Note for description) as a starting 
point. To minimize overfitting, we split the genes into the following 
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three sets: a training set (chromosomes 7–22, X), a validation set for 
hyperparameter tuning (chromosomes 2, 4 and 6) and a test set to 
evaluate overfitting (chromosomes 1, 3 and 5). During each training 
iteration, one or more trees were added to the model to fit the gradi-
ent of the loss on the training set. We stopped model training once the 
loss on the validation set did not improve for ten iterations in a row (or 
the maximum number of iterations, 1,000, was reached). Using this 
approach, we performed a grid search over the hyperparameters listed 
in Supplementary Table 6 and used the combination with the lowest 
validation loss and best performance at classifying mouse essential 
genes (mean of the ranks on the two metrics).

Choosing OMIM genes
To identify genes that are considered constrained by shet but not by 
LOEUF (Table 1), we filtered for genes with shet > 0.1 (top ~15% most con-
strained genes, analogous to the recommended LOEUF cutoff of 0.35 
(ref. 78), which corresponds to the top ~16% of genes) and LOEUF > 0.47 
(least constrained ~75% of genes). Of these, we identified genes where 
heterozygous or hemizygous mutations that decrease the amount 
of functional protein (for example, LOF mutations) are associated 
with Mendelian disorders in the Online Mendelian Inheritance in Man 
(OMIM) database70. We chose genes for Table 1 primarily based on their 
prominence in the existing literature.

We define a gene as having a pathogenic variant in ClinVar if it 
contains a variant annotated with CLNSIG = Pathogenic. We down-
loaded ClinVar variants from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
vcf_GRCh38/ on 3 December 2023.

Evaluation of additional datasets
Definition of human essential and nonessential genes. We obtained 
data from 1,085 CRISPR knockout screens quantifying the effects of 
genes on cell survival or proliferation from the DepMap portal (22Q2 
release)24,25. Scores from each screen are normalized such that nones-
sential genes identified by Hart et al.79 have a median score of 0 and that 
common essential genes identified by Hart et al.79 and Blomen et al.80 
have a median score of −1.

In classifying essential genes (Fig. 3a), we define a gene as essential 
if its score is <−1 in at least 25% of screens and as not essential if its score 
is >−1 in all screens. In classifying nonessential genes, we define a gene 
as nonessential if it has a minimal effect on growth in most cell lines 
(absolute effect <0.25 in at least 99% of screens) and as not nonessential 
if its score is <0 in all screens.

Definition of developmental disorder genes. Through the Decipher-
ing Developmental Disorders (DDD) study26, clinicians have annotated 
a subset of genes with the strength and nature of their association 
with developmental disorders. We classify genes as developmental 
disorder genes if they are annotated by the DDD study with confi-
dence_category = definitive and allelic_requirement = monoallelic_
autosomal, monoallelic_X_hem (hemizygous), or monoallelic_X_het 
(heterozygous).

We classify genes as not associated with developmental disorders 
if they are annotated by the DDD study, do not meet the abovemen-
tioned criteria for association with a disorder and are not anno-
tated with confidence_category = strong, moderate or limited and 
allelic_requirement = monoallelic_autosomal, monoallelic_X_hem 
or monoallelic_X_het.

We downloaded genes with DDD annotations from https://www.
deciphergenomics.org/ddd/ddgenes on 19 November 2023.

Enrichment/depletion of HPO genes. The HPO provides a struc-
tured organization of phenotypic abnormalities and the genes associ-
ated with them, with each HPO term corresponding to a phenotypic 
abnormality. We calculated the enrichment of constrained genes in 
each HPO term with at least 200 genes as the ratio (fraction of HPO 

genes under constraint)/(fraction of background genes under con-
straint). We defined genes under constraint to be the decile of genes 
considered most constrained by shet or LOEUF. To choose background 
genes, we sampled from the set of all genes to match each HPO term’s 
distribution of expected unique LOFs. Similarly, we calculated the 
depletion of unconstrained genes in each HPO term as the ratio (frac-
tion of HPO genes not under constraint)/(fraction of background 
genes not under constraint), where we define genes not under con-
straint to be the decile of genes considered least constrained by shet  
or LOEUF.

We downloaded HPO phenotype-to-gene annotations from  
http://purl.obolibrary.org/obo/hp/hpoa/phenotype_to_genes.txt  
on 27 January 2023.

Enrichment of DNMs in patients with developmental disorders. 
We used the enrichment metric developed by Kaplanis et al.5 in their 
analysis of DNMs identified from the exome sequencing of 31,058 
patients with developmental disorders and their unaffected parents. 
Enrichment of DNMs in patients with developmental disorders was 
calculated as the ratio of observed DNMs in patients over the expected 
number under a null mutational model that accounts for the study 
sample size and triplet mutation rate at the mutation sites81.

For Fig. 3d, we calculated the enrichment of DNMs in constrained 
genes, defined as the decile of genes considered most constrained by 
shet or LOEUF. For Extended Data Fig. 4d, we calculated the enrichment 
of DNMs in constrained genes with and without known associations 
with development disorders. We defined a gene as having a known asso-
ciation if it is annotated by the DDD study (‘Definition of developmental 
disorder genes’) with confidence_category = definitive or strong and 
allelic_requirement = monoallelic_autosomal, monoallelic_X_hem 
(hemizygous) or monoallelic_X_het (heterozygous).

For each set of genes, we computed the mean enrichment over 
sites and 95% Poisson confidence intervals for the mean using the code 
provided in ref. 5.

Heritability enrichment in constrained genes. We computed the 
heritability enrichment in the top 10% of genes constrained by shet or 
LOEUF using stratified LD score regression (S-LDSC)82. To do this, we 
divided the heritability enrichment in constrained genes as reported 
by S-LDSC by the heritability enrichment in all genes. We linked vari-
ants to genes if they were in or within 100 kb of the gene body, and ran 
S-LDSC using 1000G EUR Phase3 genotype data to estimate LD scores, 
baseline v2.2 annotations and HapMap 3 SNPs excluding the major 
histocompatibility complex region as regression SNPs. We performed 
this analysis using summary statistics from 438 traits in the UK Biobank 
(downloaded from https://nealelab.github.io/UKBB_ldsc) with highly 
statistically significant SNP heritability (LDSC z score > 7, the threshold 
recommended in ref. 82).

Expression variability across species. To understand the variability 
in expression between humans and other species, we focused on gene 
expression differences between humans and chimpanzees as estimated 
from RNA-seq of an in vitro model of the developing cerebral cortex for 
each species28. As a metric of variability between the two species, we 
used the absolute log fold change (LFC) in gene expression between 
human and chimpanzee cortical spheroids, which was calculated from 
samples collected at several time points throughout the differentiation 
of the spheroids. LFC estimates were obtained from Supplementary 
Table 9 of ref. 28.

To visualize the relationship between constraint and absolute 
LFC, we plotted a LOESS curve between the constraint on a gene (gene 
rank from least to most constrained using either shet or LOEUF as the 
constraint metric) and the absolute LFC for the gene. Curves were 
calculated using the LOWESS function from the statsmodels package 
with parameters frac = 0.15 and δ = 10.
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Expression variability across individuals. To calculate a measure 
of expression variance across Genotype-Tissue Expression (GTEx) 
samples, we log-transformed the per-gene mean and variance of 
gene expression levels (where expression is in units of transcripts  
per million) and used the residuals from LOESS regression of the  
transformed expression variance on the transformed mean expression. 
LOESS regression was computed using the LOWESS function from the 
statsmodels package with parameters frac = 0.1 and δ = 0. This proce-
dure reduces the correlation between mean expression and expression 
variance (Spearman ρ = 0.02 between mean expression and residual 
variance, compared to Spearman ρ = 0.90 between mean expression 
and variance before regression). We calculated expression variance 
using 17,398 RNA-seq samples in the GTEx (v8) release29 (838 donors 
and 52 tissues/cell lines) for all genes with a median TPM of ≥5. LOESS 
curves for visualization were computed as in ‘Expression variability 
across species’.

Feature interpretation
Training models on feature subsets. We grouped features into catego-
ries (see Supplementary Table 8 for the features in each category) and 
trained a model for each category to predict shet from the corresponding 
features. For each model, we tuned hyperparameters over a subset of 
the values we considered for the full model (Supplementary Table 7) 
and chose the combination of hyperparameters that minimized the 
loss over genes in the validation set. As a baseline, we trained a model 
with no features, such that all genes have a shared prior distribution 
that is learned from the LOF data—this model is analogous to a standard 
empirical Bayes model.

Definition of expression feature subsets. We grouped gene expres-
sion features into 24 categories representing tissues, cell types and 
developmental stages using terms present in the feature names (Sup-
plementary Table 3).

Scoring individual features. To score individual gene features, we 
varied the value of one feature at a time and calculated the variance 
in predicted shet as a feature score. In more detail, we fixed each fea-
ture to values spanning the range of observed values for that feature 
(0th, 2nd, …, 98th and 100th percentiles), such that all genes shared 
the same feature value. Then, for each of these 51 feature values, we 
averaged the shet values predicted by the learned priors over all genes, 
where the predicted shet for each gene is the mean of its prior. We 
denote this averaged prediction by s( f )het (p)  for some feature f  
and percentile p. Finally, we define the score for feature f as 
scoref = s.d. (s( f )het (0), s

( f )
het (2),… , s( f )het (98), s

( f )
het (100)), where s.d. is a func-

tion computing the sample standard deviation. In other words, a 
feature with a high score is one for which varying its value causes 
high variance in the predicted shet.

For the lineplots in Fig. 4c–f, we scale the predictions s( f )het (p) for 
each feature f by subtracting (s( f )het (0) + s( f )het (100))/2  from each 
prediction.

Pruning features before computing feature scores. While investigat-
ing the effects of features on predicted shet, we found that including 
highly correlated features in the model could produce unintuitive 
results, such as opposite correlations with shet for highly similar fea-
tures. Therefore, for Fig. 4c–f, we first pruned the set of features to 
minimize pairwise correlations between the remaining features. To 
do this, we randomly kept one feature in each group of correlated 
features, where such a group is defined as a set of features where each 
feature in the set has an absolute Spearman ρ > 0.7 to some other fea-
ture in the set.

For Fig. 4c–f, we trained models on the relevant features in this 
pruned set (GO, network, gene regulatory and gene structure features, 
respectively).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Posterior means and 95% credible intervals for shet are available in 
Supplementary Table 1. Data sources for pLOF annotations, CpG 
methylation levels, exome sequencing coverage, variant frequencies 
and mappability/segmental duplication annotations are available in 
Supplementary Table 5. A description of the gene features is available 
in Supplementary Table 8. Posterior densities for shet, likelihoods for 
shet, LOF variants with misannotation probabilities and gene feature 
tables are available in ref. 83. Additional publicly available datasets 
used in this study are described in Methods and Supplementary Infor-
mation and are accessible at IMPC essential genes (https://www.ebi.
ac.uk/mi/impc/essential-genes-search/); pLOF annotations (gs://
gnomad-public/papers/2019-tx-annotation/pre_computed/all.possi-
ble.snvs.tx_annotated.GTEx.v7.021520.tsv); mean methylation for CpG 
sites (gs://gcp-public-data–gnomad/resources/methylation); exome 
sequencing coverage (gs://gcp-public-data–gnomad/release/2.1/cov-
erage/exomes/gnomad.exomes.coverage.summary.tsv.bgz); variant 
frequencies (gs://gcp-public-data–gnomad/release/2.1.1/vcf/exomes/
gnomad.exomes.r2.1.1.sites.vcf.bgz); low mappability and segmental 
duplications (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/
giab/release/genome-stratifications/v3.1/GRCh37/Union/GRCh37_all-
lowmapandsegdupregions.bed.gz); ClinVar variants (https://ftp.ncbi.
nlm.nih.gov/pub/clinvar/vcf_GRCh38/); DepMap 22Q2 release (https://
depmap.org/portal/download/all/); DDD annotations (https://www.
deciphergenomics.org/ddd/ddgenes); HPO phenotype-to-gene anno-
tations (http://purl.obolibrary.org/obo/hp/hpoa/phenotype_to_genes.
txt); DNMs from developmental disorder patients5; UK Biobank sum-
mary statistics (https://nealelab.github.io/UKBB_ldsc); RNA-seq from 
chimpanzee/human cortical models28; GTEx v8 release29.

Code availability
GeneBayes and code for estimating shet are available at https://github.
com/tkzeng/GeneBayes and in ref. 84. Analysis code is available in 
ref. 85. All analyses were performed using Python v3.8, Python v3.9 
or R v4.2. To train models, we used a modified version of NGBoost 
(v0.3.12)16,86 (https://github.com/tkzeng/ngboost), XGBoost (v2.0.2)87 
and PyTorch (v1.12.1)88. Likelihoods were computed with fastDTWF 
(v.0.0.3)15 (https://github.com/jeffspence/fastDTWF). For hyperpa-
rameter tuning, we used shap-hypetune v0.2 (https://github.com/
cerlymarco/shap-hypetune). For heritability enrichment analyses, we 
used ldsc (v1.0.1)89. For additional analyses, we used NumPy (v1.26.0)90, 
SciPy (v1.8.1)91, Pandas (v2.1.3)92, Scikit-learn (1.3.0)93 and Statsmodels 
(v0.14.0)94.
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 B Classifying genes essential in vitro C Classifying developmental disorder genes

Model with all features
Model with no missense
or conservation features

 A Comparison to a model with some features removed

Spearman ρ = 0.92

Extended Data Fig. 1 | Performance of shet estimates from a model with some 
features removed. a, Scatterplot of posterior mean shet estimated from a model 
trained without missense constraint or cross-species conservation features  
(y axis) against shet estimated from the full model (x axis). b, Precision–recall 
curves comparing the performance of shet estimated from the full model 

(blue) and from the model without missense/conservation features (orange) 
in classifying essential genes. c, Precision–recall curves comparing the 
performance of shet estimated from the two models in classifying developmental 
disorder genes.
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 A Comparison to model trained on non-NFE subset  B Comparison to model trained on NFE subset

Spearman ρ = 0.95Spearman ρ = 0.98

Extended Data Fig. 2 | Comparison of shet estimates from models trained 
on subsets of gnomAD. a, Scatterplot of posterior mean shet estimated from 
a model trained with non-NFE individuals (y axis) against shet estimated from 
the full model (x axis). NFE, Non-Finnish European. This subset consists of 

56,000 individuals or 45% of the total dataset. b, Scatterplot of posterior mean 
shet estimated from a model trained with NFE individuals (y axis) against shet 
estimated from the full model (x axis). This subset consists of 67,000 individuals 
or 55% of the total dataset.
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Extended Data Fig. 3 | shet distributions for additional example genes. Left: posterior distributions and rescaled likelihoods for genes with few expected LOFs  
(genes in the bottom quartile). Right: posterior distributions and rescaled likelihoods for genes with many expected LOFs (genes in the top quartile).
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Extended Data Fig. 4 | Additional validation analyses. a, Precision–recall 
curves comparing the performance of shet estimates from GeneBayes against 
LOEUF from gnomAD v4.0.0 (731k exomes) or LOEUF from gnomAD v2.1.1 
(125k exomes) in classifying essential genes. b, Precision–recall curves 
comparing the performance of shet estimates from GeneBayes against other 
constraint metrics in classifying nonessential genes. c, Precision–recall curves 
comparing the performance of shet against other constraint metrics in classifying 
developmental disorder genes. d, Enrichment of de novo mutations in patients 
with developmental disorders, calculated as the observed number of mutations 

over the expected number under a null mutational model (n = 31,058 parent–
offspring trios). We plot the enrichment of synonymous, missense, splice and 
nonsense variants in the 10% of genes considered most constrained by shet (blue) 
and the enrichment of these variants in all other genes (gray), including (left) 
and excluding (right) known developmental disorder genes. Bars represent 95% 
confidence intervals, centered around the mean. e, Scatterplot of the enrichment 
of common variant heritability in the 10% of genes considered most constrained 
by shet (y axis) or LOEUF (x axis), normalized by the enrichment of heritability in all 
genes. Each point represents one trait.
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Extended Data Fig. 5 | Performance of shet and LOEUF for genes with differing 
numbers of expected LOFs. Left: precision–recall curves comparing the 
performance of shet against LOEUF in classifying essential genes for groups of 

genes binned by their expected number of LOFs. Right: precision–recall curves 
comparing the performance of shet against LOEUF in classifying developmental 
disorder genes for binned genes.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01820-9

 A Correlation of all features with gene length  B Correlation of expression features with gene length

 C Correlation of additional features of interest with gene length D Correlation of features with shet after accounting for 
    gene length

Extended Data Fig. 6 | Correlation of gene features with gene length.  
a, Histogram of the Spearman ρ between gene features and coding sequence 
(CDS) length. b, Histogram of the Spearman ρ between gene features and CDS 
length for gene expression features, colored by category. c, Spearman ρ between 

gene features and CDS length for additional features of interest. d, Scatterplot of 
the Spearman ρ between gene features and posterior mean shet (y axis) against the 
partial Spearman ρ (x axis) after controlling for the effect of gene (CDS) length.
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