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 SUPPLEMENTAL MATERIALS & METHODS 

 I. Background on species biodiversity and biogeography 
 I.1 Theoretical models of biodiversity 

 The frequency or abundance of different species are often visualized with two types of 
 histograms: Preston plot (Fig. S1, left), with x-axis the logarithm of abundance bins and 
 y-axis the number of species at given abundance. Alternatively, the Whittaker plot (Fig. 1, 
 right), with x-axis the species list ranked by their order of abundance (i.e. from common to 
 rare), and in the y-axis the logarithm of % relative abundance. These are both aiming to 
 describe distributions that are very uneven, as a key insight of species abundance 
 distributions  is the “commonness of rarity”. Most species have low abundance and just a few 
 are at high abundance. 

 The 20  th  century showed  intense modeling of these  distributions (Fig. S2, see 
 summaries of early models in  (  34  )  or  (  35  ,  36  )  ). The  models that have become most useful 
 include Fisher’s log-series distribution  (  37  )  , Preston’s  log-normal distribution  (  38  )  , and 
 Hubbells’ UNTB  (  34  )  . 

 Fisher’s log series assumes that species abundances in the community are independent 
 identically distributed variables, sampling is a Poisson process, sampling is done with 
 replacement, or the fraction sampled is small enough to approximate a sample with 
 replacement. Here, 

 , 

 where  is a constant  related to the sample dataset  (typically close to 1), 
 , and  is a new constant term (ecosystem-specific)  that is used as a measure of 

 biodiversity. Fisher proposed the number of species could be estimated as: 

 Preston  (  38  )  posed that the skewness of previous proposals  is due to lack of sampling. 
 With little data, common species are collected sooner, but with more abundant sampling, the 
 rarest species are also well-sampled and have abundances well above 0. Preston then 
 proposed that the octaves (bins of doubling abundance) follow a normal distribution, making 
 the raw abundance log-normal distributed. Given  is the number of species in the model 
 octave of abundance and a variance composite of the log-Normal  , the number of species 
 per abundance (octave) bin  (=  log(n)  ) is: 

 . 

 The Unified Neutral Theory of Biodiversity (UNTB) by Hubbell  (  34  )  takes a 
 stochastic approach of a community with immigrants, extinctions, and speciation in 
 continuous dynamics. Interestingly, the UNTB's key parameter,  θ  , coincides with Fisher's  α  , 
 as the log-series is a limiting case of UNTB. Hubbell's discovery was that  α=2J  m  v  , where 
 is the size of the external metacommunity that provides migrants of species to the focal 
 community, and  is the speciation rate. Alonso and  McKane  (  39  )  derived the so-called 
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 Metacommunity Zero-Sum Multinomial (MZSM) distribution from the UNTB. In practice, 
 both distributions have almost-identical fits (lines completely overlapping in Fig. S2). 

 I.2 Metric of species diversity 

 Although a number of metrics exist to measure species diversity, such as the Shannon index, 
 (with  Pi  the relative proportions of species abundances)  or Fisher's 

 non-dimensional  parameter, the study of species  abundances and area relationships has 
 focused on species richness  S  , that is, the total  number of species in a given location or area. 
 Below we therefore focus on species richness  . 

 I.3 Biogeography of species and extinction. 

 SAD and SAR connection 

 Due to many species being rare, it is expected that as researchers sample an area, the most 
 common species will be sampled first, and as the area studied increases, more and more 
 species will be discovered. This is thought to happen following a power law relationship, 
 where the number of species in that area  S  A  increases  with the sampled area  ,  with scaling  z 
 (slope in a log-log plot), and with a constant  c  : 

 . 

 Preston  (  20  )  derived theoretically that from a log-normal  series, one would expect 
 z=  0.27, under a number of assumptions (Fig. S3). This  has been empirically shown to be 
 close to reality  (  15  ,  20  )  , although there is some  variation across ecosystems and spatial 
 scales. 

 I.4 Estimating extinction of species from the species area relationship 

 The first estimates of species extinction used the SAR relationship. Given a reduction of 
 ecosystem area,  A  , by an area of  a  (  16  ,  40  )  . If these  areas, as well as the SAR scaling,  z  , are 
 known, then one can predict the number of species in the future as: 

 , 

 However, we are normally interested in the fraction of species that will go extinct  X  s  so we 
 can take the ratio: 

 . 

 II. Population genetics models and the site frequency spectrum. 
 II.1 The Wright-Fisher model and the site frequency spectrum 
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 Statisticians and population geneticists from the 20  th  century, Wright and Fisher, built a 
 simple statistical model of evolution of a population. It assumes that each generation a 
 population of  N  monoecious (hermaphrodite) individuals  mate randomly to create a new 
 generation of  N  individuals and then immediately die  so that only  N  individuals remain in the 
 population at any given time. This random sampling process causes the frequency of a variant 
 in one generation to possibly differ from its frequency in the previous generation—a process 
 known as genetic drift. 

 When a nucleotide mutation or variant (e.g. ACG  A  A → ACG  T  A ) emerges by a 
 random process of, for instance, DNA replication error, it will first be in 1/  N  individuals (if 
 we consider these diploid, 1/2N chromosomes). Through random sampling that  T  mutation 
 may be lost, stay at the same frequency, or randomly move to higher frequency. Although 
 rarely, just by chance, the mutation may reach 100% frequency.  This results in a 
 “commonness of rarity” when looking at mutations in a population, as we have seen in 
 previous sections for species. Since these genetic drift dynamics affect all mutations 
 genome-wide, we therefore expect the majority of mutations to be absent, or rare, and only a 
 much smaller proportion of variants to be at moderate or high frequencies. 

 The site frequency spectrum (SFS) refers to the distribution of frequencies of variants 
 in a population. This is the number of sites at which we observe a variant at frequency  q  in a 
 sample of  n  individuals. To derive the expected SFS  distribution, we turn to Kingman’s 
 Coalescent  (  41  )  . Both models describe the same ideal  population of random mating, constant 
 population size, and mutations emerging at a low rate and drifting in frequency. But while the 
 Wright-Fisher model describes the dynamics of a whole population forward-in-time, the 
 Kingman’s Coalescent describes the genealogy of a sample of individuals from a population, 
 going backward in time. By building a model around the individuals that are sampled or that 
 survived, rather than of an entire population, the Coalescent provides a simpler way to derive 
 expectations in small populations or in cases, for example here, where a limited sample of 
 genomes are sequenced. Using the Coalescent (see  (  42  )  for details), one obtains that the 
 expected number of mutations of a given abundance,  n  , is inversely related to their frequency, 

 :  𝑞 

 for some constant c that depends on the mutation rate and the population size. This SFS from 
 population genetics theory is remarkably similar to the Species Abundance Relationship. In 
 fact, Fisher himself  (  18  )  derived an expression similar  to the above. 

 Rearranging terms, one can see this is a constrained version of the log-series 
 Probability Mass Function (PMF), which Fisher also proposed for the distribution of species 
 abundances  (  37  )  . Below, one can graphically see the  similarities (Fig. S4): 

 Keeping the abundance,  , constant (and low), when  the number of individuals 
 , we know that the constant  from Fisher's SAD approaches  1,  . 

 Then, we can rewrite the number of species at any given abundance (  ) as: 
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 So both have the same form as the log series PMF:  when  . In 
 the next section we will see that the constants of the SAD and the SFS are proportional to 
 species and mutation diversity, although the Site Frequency Spectrum (SFS) is a specific case 
 of SAD. One can also see that because the constant in the SFS is the population scaled 
 mutation rate,  , and Fisher's  for large N. 

 II.2 Metrics of genetic diversity 

 In population genetics, multiple measurements of genetic diversity have been put forward. 
 The most straightforward is the allelic richness, also number of mutations, or also called the 
 number of segregating sites. Segregating sites,  M  ,  is the direct equivalent of the species 
 richness  , S  , and it depends on the number of samples  used and length of DNA sequence 
 explored (Note: we use the non-standard notation,  M  , as the standard in population genetics is 
 S  [for segregating sites] but this is already in use  for species richness. We then use  M  for 
 mutations and  S  for species). This metric can also  be thought of as the area under the curve of 
 the SFS. Two other metrics that describe the SFS but that aim to be sequence-length- and 
 individual independent are Watterson's Theta,  , and  Nucleotide diversity,  ,  (also called 

 ). These two metrics of diversity are identical at  population equilibrium and are estimates 
 of  4N  e  μ  (when the SFS follows a 1/q relationship),  with effective population size  N  e  and 
 per-generation mutation rate  μ  , whereas they differ  in non-equilibrium demographics, under 
 natural selection, or under other behaviors not considered in the Wright-Fisher neutral model, 
 such as different mating systems  (  43  )  . 

 First,  is described as: 

 , 

 and  as: 

 , 

 where  is the  n-1  th  Harmonic number, which serves  to scale the segregating 
 sites based on the assumption that the abundance of mutations follows a 1/q SFS. The 
 diversity metrics  and  are both functions of the  SFS, as opposed to Fisher's  from the 
 Species Abundance Distribution, which is a parameter that changes the shape of the 
 distribution. 

 Although often nucleotide diversity  is reported  as a typical measure of genetic 
 diversity of a species, since it can be calculated for a single genome and it captures the 
 process of inbreeding of a population  (  17  )  , classic  literature relating germplasm management 
 for conservation and breeding has advocated for allelic richness  (  44  )  . 

 II.3 Spatial genetics and the mutations-area relationship (MAR) 

 Since its inception, a number of concepts in population genetics have dealt with genetic 
 variation in populations of different sizes, or populations separated in space. For instance, one 
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 classic result in population genetics is the relationship of  π ≈ 4N  c  μ,  which relates genetic 
 diversity  π  with the effective population size  N  e  and the mutation rate of the species  μ.  A 
 relationship which is still studied nowadays in an effort to reconcile data with theory  (  17  )  . 

 In 1943, Sewall Wright turned to study the genetics of multiple populations within a 
 species. He proposed that populations sampled further apart geographically must differ more 
 in allele frequency due to more independent drift  (  45  )  , leading to the commonly used 
 correlation between geographic distance and the metric of differentiation  F  ST  . Most 
 prominently, the use of correlation in the accumulation of mutations of populations that are 
 geographically close or share evolutionary history has been uncovered using dimensionality 
 reduction approaches such as PCA  (  46  )  . 

 Despite these enormous advances in understanding spatial genetic structures, 
 surprisingly little quantitative work has been done to parametrize the loss of genetic diversity 
 by direct loss of habitat. 

 Because of the abundance of rare mutations in populations, it is straightforward to 
 think that the more area and individuals sampled, the more segregating sites will be found. 
 Analogous to the Species Area Relationship (SAR),  S=cA  z  , we should thus be able to 
 estimate the equivalent scaling for a mutations-area relationship (MAR): 

 M=cA  z  , 

 with a scaling  z = z  MAR  , which corresponds to the  slope of best fit in a log-log-plot of 
 A  and  M  for a given species within its geographic  range. (Other functions are often fit 
 empirically for SAR datasets, which we explore later in section III.3. We work with the 
 power law because of its historical use, mathematical convenience, and because other more 
 complicated functions only improved fitting marginally, see Table S4). 

 This differs from other efforts to understand the number of segregating sites or 
 heterozygosity differences across species that differ in their total census size or geographic 
 distribution  (  47  ,  48  )  . The MAR instead is built within  a species, as its ultimate aim is to relate 
 the number of mutations left in a species as it loses spatial populations. 

 Below we derive what are the expectations of MAR taking two opposite scenarios of 
 neutral population evolution, and study how many segregating sites or mutations  M  are 
 discovered with increasing area in the simulations. We further test the scenario of 
 meta-populations in space with varying migration rates and neutral or natural selection 
 processes. 

 II.3.1 Panmictic population 

 The expected number of mutations,  M  , is a constant  that depends on the mutation rate,  μ  , and 
 the expected total branch length of the population genealogy,  L  , with  M=μL  . Under the 
 coalescent, the total branch length is equal to the number of lineages or individuals sampled 
 from the population,  n  , times the time of the genealogy  during which there are such lineages, 
 T  n  , plus  n-1  times the time in the genealogy with  such number of lineages, and so forth: 

 . 

 Under the coalescent, 

 , 
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 and thus: 

 , 

 which simplifies to 

 , 

 where  H  n-1  is the (n-1)th harmonic number. This is  of course related to one of the 
 diversity metrics (section II.2), where Watterson’s  scales the number of segregating sites 
 (  M  ) by the harmonic number of sampled individuals.  This is based on the expectation that as 
 more individuals are sampled, we expect to discover more mutations proportional to the 
 above harmonic number. Because such number is not so easy to work with to create an 
 expectation for  z  MAR  , we further simplify this expectation  following the Taylor expansion 
 approximation of the harmonic number: 

 , 

 which we can further approximate as: 

 . 

 Therefore, assuming a constant mutation rate and effective population size (  N  e  ) under 
 panmixia,  M  grows following  log(n)  . In such a case,  a log-log plot (typical power law plot) 
 does not display a linear relationship, and the slope is asymptotic to  z → 0  for  N → ∞  . On 
 the other hand, with low values of  x  (area or individuals sampled close to 0), the slope  z  MAR 

 will be incorrectly high. We can show this effect trivially by studying the local derivative of 
 the function  log  10  (M) = log  10  (log(N))  . The local slope  of that function is an approximation of 
 our  z  MAR  parameter. This can be locally estimated  at any given point  N  by taking the 
 derivative: 

 . 

 The implication of this nonlinear function is that if we sampled only few individuals 
 or areas of a species (e.g., n=100), even if this species was completely panmictic we would 
 expect a non-zero  z  MAR  ,  a value that will change with  sampling effort. We can roughly 
 approximate  z  MAR  by the local slope of the number  in the midpoint of the graph, e.g., for n=100 
 we look at the slope at  n=50  , and obtain  1/(log  10  (50) x log(10))  ≅  0.256  . Therefore, with small 
 sample sizes, this parameter will not be helpful to understand whether a species behaves 
 panmictically or is limited by migration, which may be problematic for estimates of genetic 
 diversity loss later. We can visualise our expectation of the  z  MAR  under panmixia plotting the 
 first derivative above (Fig. S5). Because—as we will show below—we do expect a power 
 law relationship under a migration-limited scenario,  z  MAR  should theoretically not change with 
 sample size. The graphical study of the (non-)linearity of the log-log plots between the 
 number of mutations and area sampled should be diagnostic to this problem (We see for 
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 instance that  Pinus contorta  has a highly nonlinear relationship, likely due to the use of 
 ascertained intermediate frequency markers instead of genome-wide data, Fig. S22). 

 Finally, we used msprime  (  49  )  to corroborate this finding (z  MAR  being constant with 
 respect to sample size) with simulations, simulating 1600 demes in a 40x40 grid of demes or 
 populations of  N=N  e  =1000  that are completely panmictic  (universal gene flow or dispersal, 
 so this is equivalent to a single panmictic deme). We observed the  z  MAR  for  t=100...10,000 
 generations in  log  10  increments. After this time,  we sample  n=1...100  individuals in 
 increasingly large groups of adjacent demes. The range of estimates of  z  MAR  in these 
 simulations was 0.07-0.15. 

 Fig. S5 indicates that the minimum average  z  MAR  even  under panmixia would 
 continuously increase with lower numbers of individuals of a species sampled. This is due to 
 the fact that the site frequency spectrum is not fully sampled with small numbers of 
 individuals. Therefore, we devised an approach to rescale  z  MAR  . 

 II.3.2 Scaling z  MAR  for low sampling and low census  size 

 Let  z  pan-n  = E[z  MAR  | n, panmixia],  be the expected  value of  z  MAR  of a panmictic species 
 given that we only have small sampling of  n  . Although  theoretically  z  MAR  should approach 0, 
 with small samples it can be upwardly biased. In order to force the possible values of  z  MAR  to 
 range 0-1 despite small sample sizes, we can scale it as: 

 z  naive scaled  = (z  MAR  - z  pan-n  ) / (1-z  pan-n  ). 

 In words, this moves the purple line in Fig. S5 to zero, stretching the space above it 
 accordingly. 

 Most species have census sizes so large that  z  MAR  should indeed approach 0 under 
 panmixia, so we should correct the sample estimate  z  MAR  to range 0-1. However, some species 
 have such low census size  N  that even if we sample  all individuals of a species, the sample 
 size will still be small. In those cases, we should not scale  z  MAR  to range 0-1, but rather scale it 
 from  z  pan-N  - 1,  where  z  pan-N  = E[z  MAR  | N, panmixia]  is  the expected value of  z  MAR  given a 
 census size  N  (plants or animals living in the wild).  The updated scaling approach for both 
 census and sample size would then be: 

 z  * 
 scaled  = (1-z  pan-N  ) (z  MAR  - z  pan-n  ) / (1-z  pan-n  )  + z  pan-N  . 

 Note that this scaled estimate must be conservative because while we adjust the 
 minimum  z  for the average value expected for low sample  sizes, we do not adjust for the 
 maximum possible  z  , which only under very extraordinary  theoretical conditions can be  z=  1, 
 namely under an unrealistic complete disconnection of populations by gene flow (see below). 
 Because deriving the maximum  z  would require more  biological knowledge of the species’ 
 demography, landscape connectivity, genome structure, etc., and because we rather create 
 conservative estimates, we do not create further scaling approaches. 

 II.3.3 Meta-populations in space 
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 A more realistic simulation than a panmictic population is that of the same 40x40 deme grid 
 where migration can happen between adjacent demes. This migration rate can be changed to 
 understand the effect of population structure and migration on  z  MAR  . Under no migration (or 
 very low migration), we expect the mutations in two distinct populations (and thus their SFS) 
 to be (almost) completely independent. Hence, when explored demes are doubled (  N  e 
 doubles), we discover twice as many mutations. In this case, the number of mutations should 
 scale linearly with the area, so we expect the following to be true:  M=A  ,  log(M) = log(A), 
 and  z  MAR  =1  . Our analyses under different sampling  schemes, and with different numbers of 
 “burn-in generations” (generations since a single deme colonised the full 40x40 space) 
 confirm that  z  MAR  approaches 1 in the limit of low  migration (see Table S1 and Fig. S6). 
 Different from the panmictic situation, as we increase the sampled area, we not only increase 

 , which would lead to a  log(A)  in mutations, but  also increase  N  e  . 

 These simulations corroborated that we can recover  z  MAR  values ranging between 0-1 
 just varying migration and burn-in generation parameters. We found that it was both the time 
 of the system to reach an equilibrium as well as the migration rate that determined  z  MAR  . In the 
 future, it will be interesting to study different non-equilibrium scenarios to better understand 
 how genetic drift, gene flow, and different landscape structures may shape the  z  MAR  . 

 II.3.4 Metapopulations in space with local adaptation 

 In order to simulate local adaptation, we use the individual-based simulation software SLiM 
 (  50  )  following the approach of  (  51  )  . These simulations  were set up for 196 demes arranged in 
 a 14 x 14 grid. Each grid cell contains a population of  N=1000  and has an environment 
 attribute,  , which varied spatially from the lower-left  to the upper-right corners (approx.  -7 < 
 e < 7  ). 12 locations in the genome were allowed to  be under directional natural selection. The 
 selection coefficient was fixed for a simulation, and grid runs were conducted with  0<s<0.05  , 
 but this selection would vary based on the environmental selection value of a grid cell, 
 according to  e × s  . Therefore, these alleles are antagonistic  pleiotropic. Selected mutations 
 across the 12 loci in the genome behaved additively (e.g. if an individual in grid cell  i  had 
 two of the selected mutations, fitness would be  w=1+2s  × e  i  ). The migration rate varied from 
 one individual in a billion (1  ×  10  -9  ), to one individual  every ten (1  ×  10  -1  ). Finally, the mutation 
 rate was set to 10  -8  mutations/bp/generation and the  recombination rate to 10  -7 

 crossovers/bp/generation. 

 These results, together with individual-based simulations, corroborate what we had 
 observed with coalescent simulations, i.e. that  z  MAR  is lowest with a high migration rate. The 
 simulations also appear to show a negative effect of selection on  z  MAR  . Generating a linear 
 model fitting migration rate and selection and their interaction to understand what factors 
 explain the scaling coefficient:  z  MAR  ~ log  10  (m) +  s + log  10  (m) s;  we confirm that both had a 
 significant effect, and that selection significantly reduces  z  MAR  (Fig. S7, see below summary 
 Table S2). This may seem counterintuitive, as one may expect that locally-adaptive mutations 
 are rare and will be localised only to where they are adaptive. More work is necessary to 
 understand the signatures that spatially-varying natural selection (and its different types) 
 create on  z  MAR  , but we can think that under migration  limited scenarios (where  approaches 
 1) adaptive alleles and their linked mutations permeate faster to similar neighbour 
 environments than neutral alleles. 

 II.3.5. Metapopulations in space with purifying selection 
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 To understand the effect of purifying selection on  z  MAR  we also ran 2D simulations with a 
 fraction of the genome allowed to be globally-deleterious (i.e. independent of the 
 spatially-varying environment). We simulated an increasingly strong purifying selection (|  s| 
 range from 0.0 to 0.1), simulating roughly that 29% of the genome of Arabidopsis is coding 
 (arabidopsis.org) and mutations can be deleterious. We also varied the degree of 
 recombination. Following our expectation, with stronger purifying selection deleterious 
 mutations are pushed to lower allele frequencies, stopping their geographic spread, which 
 increases  z  MAR  . Recombination rate appears to have  a minor role on  z  MAR  (Fig. S8). 

 II.3.6 Continuous-space non-Wright-Fisher models 

 In order to confirm  z  MAR  generality in highly realistic  conditions and its behavior through the 
 population extinction process (II.4), we set up SLiM simulations in continuous space using 
 non-Wright-Fisher dynamics  (  50  )  . Spatial population  structure in these simulations was 
 established through individual dispersal, local mate choice and spatial competition, which we 
 chose to lead to realistic values of  F  ST  across space.  Spatial competition also acted as 
 population control, by keeping the total population size below a target carrying capacity 
 through direct effects on individual fitness. In addition to competition, fitness was also 
 affected by individual age as well as by a polygenic trait under stabilising selection. A subset 
 of variants (final proportion ~10%) directly affected this trait with effect sizes drawn from a 
 Gaussian distribution with mean = 0.0 and standard deviation = 0.1, and a fitness penalty was 
 incurred by deviating from the optimal trait value using a Gaussian fitness function centered 
 at the optimum and with a standard deviation = 5.0. We initialised functional variation for 
 SLiM using neutral coalescent simulations with msprime  (  49  )  to reduce the computational 
 burden of burn-in, and loaded the resulting tree sequences into SLiM  (  52  ,  53  )  . We drew 
 functional effect sizes for these variants, placed individuals into continuous space, and ran 
 simulations forward-in-time for 5,000 generations. After that, the geographic distribution of 
 the species experienced impacts as expected during global change: every generation, 0.001 of 
 one edge of the species distribution got its carrying capacity reduced to 0. This meant that 
 over 1,000 generations the whole species would disappear (note that this is a reasonable 
 fraction of area reduction given the estimates of yearly deforestation and habitat change in 
 section V). We subsequently overlayed neutral mutations on the tree sequence using 
 msprime, and analysed genomes sampled throughout the extinction process (by tracking them 
 in the tree sequence output) and extracted using tskit. This showed that MAR of ~0.3 is 
 established in such realistic population dynamics as well as that  z  MAR  estimated at the 
 beginning of the simulations predicted well the loss of (Fig. S9). 

 II.3.7 Connection of  z  MAR  with the isolation-by-distance  pattern 

 Ultimately,  z  MAR  is a complex integrator of evolutionary  forces acting in space (mutation, 
 migration, drift, selection) and captures how structured the distribution of a species' 
 mutations is. Although the isolation-by-distance pattern conceptually resembles  z  MAR  , we have 
 found no obvious analytical expression that relates both. Note that  F  ST  is defined based on 
 heterozygosity or  , instead of the number of segregating  sites (i.e., mutations  M  ). For 
 instance, using Hudson's estimator  (  54  )  to compute  F  ST  across a set of populations we 
 calculate  F  ST  = 1- (π  w  / π  b  )  , where  π  w  is the diversity  or heterozygosity within a population and 
 π  b  is the same parameter calculated for the meta-population.  Plotting  F  ST  of a metapopulation 
 by the distance of the farthest demes shows the typical non-linear trend of 
 isolation-by-distance, which shows that very close populations have similar allele frequencies 
 whereas populations further away drift apart. A challenge of  F  ST  is that it requires 
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 pre-defining discrete populations, which is straightforward in stepping-stone simulations but 
 hard in real data. Comparing average  F  ST  of our 14x14  spatial demes and  z  MAR  , we see that the 
 two parameters correlate (Fig. S10C). However, it appears that for low values of  F  ST  ,  z  MAR 

 captures more variation across the simulations (Fig. S10). These patterns were also confirmed 
 in continuous space simulations (not shown). 

 II.4 The loss of mutations (genetic diversity) in space 

 The aim is to predict the fraction of genetic diversity loss,  x  M  , from shrinking of an ecosystem 
 by an area  a.  To define all terms, we then have a  past area  A  t-1  and a present reduced area 
 A  t  =A  t-1  -  a  , and a fraction of area extinct  x=a/A  t-1 

 We first think of the loss of genetic diversity  x  M  through the basic process of losing 
 individuals. From the population genetics’s coalescent theory derivation of the number of 
 mutations or segregating sites from individuals we got the approximation  M~log(N). 
 Assuming the loss of area is simply the loss of individuals (  A=N  ), we can derive the fraction 
 of genetic diversity loss as: 

 The loss of mutations is then in the scale of:  log(1-x)  ;  which is very slow, as we 
 expected from having derived the trend that under panmixia  z  MAR  ≈ 0  . A substantial loss of 
 genetic diversity in this case only happens when population extinction is almost complete. 

 Species do not typically behave perfectly panmictic given different  z  MAR  values. Under 
 population structure, we can use our relationship to project the number of mutations (genetic 
 diversity) lost as the geographic distribution due to habitat loss or climate change following 
 equation: 

 . 

 In the most extreme scenario of  z  MAR  ≈ 1  , the fraction  loss of geographic area directly 
 translates to the same fraction loss of genetic diversity. 

 Reality should be in between the panmictic and fully-migration-limited cases. With 
 combinations of environmental selection, non-equilibrium demography, and long-range 
 dispersal, we may get intermediate  z  MAR  values, and  it will be empirical estimates that can 
 inform us how much may be lost (Section III). 

 A potential caveat of this approach is that some species may partially persist in the 
 altered habitat  a  (  55  ,  56  )  , some genetic diversity  may persist too. In such a case, we could 
 update the MAR as the “countryside SAR”, where we use habitat affinity (from section II.5, 
 if this persistence involves first complete removal and then posterior recolonization, it can be 
 assumed as completely lost, otherwise, the countryside MAR may be appropriate). For 
 simplicity, we assume all habitat transformed  a  is  of a single type with average habitat 
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 affinity  h  given by global estimates of relative plant species richness in all habitats that are 
 non-primary vegetation  (  57  )  . This average relative  richness (RR) 0.74 (sd=0.12, 
 min-max=0.42-1.23). Using the transformation:  h=RR  (1/z)  (  56  )  , we can rewrite our MAR as: 

 If populations would not be completely lost, this will have a dampening effect in 
 genetic diversity loss. For instance with the canonical  z  MAR  =  0.3, 50% area transformed, and 
 the above relative richness mean, the projected genetic diversity loss will be 18% for the 
 regular MAR and 11% for the countryside MAR. 

 II.5 Recovery of genetic diversity after a bottleneck or local extinction 

 The intuition that rapid recovery of genetic diversity may be possible is likely flawed. 
 While genetic recovery may be faster than speciation rates, which are on the order of millions 
 of years, the time for a set of populations that went through a simulation burn-in of 1,000 
 generations (not yet in diversity equilibrium), and that suffer an instantaneous 5% reduction 
 of area and an instantaneous recovery (e.g., through reforestation) would range from 20-90 
 generations. This number of generations for long-lived species would translate into centuries 
 or millennia of recovery without further impacts. About 49% of simulations – including every 
 simulation that reached equilibrium (burn-in generations >10,000) – have a recovery time of 
 more than a thousand generations (Fig. S11). 

 III. The mutations-area relationship with the 1001 Arabidopsis Genomes 

 We begin testing the idea of a general mutations-area relationship using the extensive 
 sampling of the model plant species  Arabidopsis thaliana  and the 1001 Arabidopsis Genomes 
 Project  (  19  )  . This section will serve as a case study  to explore different approaches and biases 
 when building MAR to then apply the learned lessons across species (section IV). 

 III.1 The Site Frequency Spectrum of the 1001 Arabidopsis Genomes 

 We began analyzing the frequency distribution of 11,769,920 biallelic genetic variants (i.e., 
 mutations), which is typically called the Site Frequency Spectrum (SFS) in population 
 genetics. 

 To showcase the similarities to the Species Abundance Distributions (SAD), we use 
 the Whittaker plot of mutation rank abundance (Fig. S12, S13) that suggests a log-normal of 
 S-shape may be the best fitting model (Table S3). For a review listing many popular models, 
 see  (  58  )  , and for implementation details of 13 SAD  models see the thorough manual of R 
 package SADS  (  59  )  . As we shall see later, the log-normal  distribution seems to be the best fit 
 across species (Fig. S13, Table S3). 

 Although model AIC captures best the fit of a curve accounting for the difference in 
 parameter complexity of each model and the statistical distributions behind, we often are 
 interested in the variance explained. We then calculated a proxy of predictive accuracy using 
 a pseudo  -R  2  approach of the difference between the  model fit and the observed data as: 

 . For  A. thaliana  , we used 10,000 SNPs sampled at  random to an accuracy of 
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 over  R  2  >0.999 for both the top log-Normal model and the bottom log-Series model, 
 indicating that all “commonness of rarity” models must have a pretty good fit of mutation 
 frequency data. 

 The  typical  SFS  from  population  genetics  is  of  course  not  implemented  in  current  packages 
 for  Species  Abundance  Distributions  like  R  sads.  For  comparison,  in  the  main  text  we  also  calculate 
 the log likelihood and AIC of this following the standard population genetics likelihood: 

 , 

 where  N  represents the number of individuals in a  sample, and  q  i  is the minor allele frequency of a 
 SNP in the sample, in the main text calculated for  i  =1…10000 random SNPs (see main text). As 
 before,  H  n  is the harmonic number function. 

 III.2 Building the mutations-area relationship (MAR) 

 In the following, we explain how the area was estimated that was used to compute  z  MAR  on 
 real world data. In short, we used a grid on the world map, with samples placed on the map 
 based on their geo-coordinates of origin (Fig. 1 in main text). We first create square spatial 
 subsamples of the  Arabidopsis thaliana  geographic  distribution (Fig. 1, Fig. S15) and 
 quantify diversity  M  as the total segregating sites.  Excluding zeros, these two variables are 
 fed to the sars_power() function from the R SARS package  (  60  )  . 

 Although the power law mutations-area relationship was already theoretically 
 motivated (II.3), here we also fit different types of functions typically applied to the 
 Species-Area Relationship. Doing this, we reach the conclusion that multiple models perform 
 very similarly, and the classic power law is among the top models, see Table S4. Although 
 small marginal fitting accuracy could be achieved with other models, for mathematical 
 convenience and historical continuity, we use the power law for later sections and the study 
 of MAR across species (Sections IV and V). 

 Because in the species literature it is recommended to only quantify richness of 
 endemic species  (  61  )  , we also count segregating sites  that are private to the area subsample, 
 creating the equivalent endemic-mutations-area relationship (EMAR)  (  61  )  . The MAR slope 
 and 95% Confidence Interval was 𝑧 = 0.324 (0.238 - 0.41) (Table S5, Fig. S14 A), while the 
 EMAR was 𝑧 = 1.241 (1.208 - 1.274) (Table S6, Fig. S14 B). Interestingly, the endemics-area 
 relationship of 𝑧 ≈ 1 resembles that of endemic species, whereas the total mutation 
 relationship with area is above that of species relationships, which typically follows the 
 canonical 𝑧 ≈ 0.2 − 0.4. 

 We must note that EMAR, the genetic analogy of the Endemic-(species)-Area 
 Relationship (EAR) may not be that meaningful when analyzing genomic data (we did not 
 find a way to theoretically motivate it in section II), and later we see it overestimates loss in 
 our simulations (Fig. S18) 

 III.3 Testing for potential numerical artefacts 
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 We wondered whether MAR estimates may be affected by some numerical artefacts in our 
 software pipeline (available at https://github.com/moiexpositoalonsolab/mar). For instance, 
 real world data may have uneven sampling in space, the spatial resolution of georeferenced 
 samples may vary, projection of samples into gridded maps may have limited resolution, 
 software pipelines may produce biased estimates, etc. To test this, we conducted several 
 experiments: 

 Lower bound of the method for  z  MAR  .  Our first experiment  when building the MAR 
 aimed to make sure that spatial sampling, or some unknown bias in genome sequencing, or 
 the number of samples used, are not creating artificially large  z  MAR  .  We then simulated a mock 
 dataset of  A. thaliana  with the same number of mutations,  samples, and using the original 
 geographic locations. The number of SNPs were also sampled in a way that we created a 
 canonical 1/q SFS for the whole species. Under no biases, we then expect the MAR to follow 
 the theoretical derivation under panmixia with a  z  ~0.  This exercise confirmed we get a value 
 approaching zero:  z=  0.033, (-0.095 - 0.162). 

 Grid sizes, area calculations, and non-random spatial sampling.  In order to 
 streamline geospatial operations, we implemented the MAR relationship calculations in this 
 project using R raster objects  (  62  )  . This required  projecting the collected samples of a species 
 and the observations of any given mutation into a world map (i.e., each mutation's geographic 
 distribution). Necessarily, in order to be able to assign areas to sets of samples or mutations 
 on the map, the projection requires the choice of a grid size. The larger the grid size (e.g., 
 lower spatial resolution), the faster the spatial operations can be performed. Further, for larger 
 grid sizes, we expect the slope of MAR to be more influenced by larger-scale patterns, while 
 for smaller grid sizes, the MAR will be influenced by smaller-scale patterns. To test this, we 
 repeated the subsampling of  A. thaliana  distribution  with grid sizes ranging 0.1 degrees 
 latitude/longitude (roughly 10km side-length in temperate regions) to 10 degrees (roughly 
 1,000 km side-length). The estimates were roughly consistent between 0.4-0.6, but increases 
 in value at larger grid sizes (row in Table S7 for large grid size values), a scale-dependent 
 pattern that resembles results of SAR of species in ecosystems fitted at different scales  (  15  )  . 

 Because we often have sparse samples of individuals in space, we devised two 
 strategies to calculate areas during the subsampling of MAR (see cartoon in Fig. S15): (A) 
 the total square area of the minimum and maximum latitude/longitude values of all the 
 samples analyzed. That is, simply the area of the red box in the figure. (B) the sum of areas of 
 grid cells that contain at least one sample. That is, the sum of the grey squares within the red 
 box in the figure. In addition, we also calculated the MAR relationship assuming the total 
 area is equal to the number of individuals (  A=N  ) (which  should be theoretically equivalent to 
 a grid of very high resolution where we end up with a maximum of one individual sampled at 
 any grid cell). 

 Table S7 values suggest there is a dependency of  z  MAR  with the grid size when areas 
 are calculated as the sum of grid cells with at least one sample. Our intuition for this pattern 
 is that lower resolution grids (e.g., 5 degrees side) lead to some grid cells having many 
 samples, which would increase the number of mutations discovered when discovering the 
 area. On the other hand, the calculation of  z  MAR  using  the total area does not seem to affect the 
 z  MAR  estimate; however, because large areas often  do not have samples (limiting the potential 
 to find new mutations), it creates a higher variance in the estimate of  z  MAR  (see confidence 
 intervals in Table S7 and Fig. S16). Here, we favored consistency of  z  at the expense of 
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 broader, more conservative confidence intervals. All the estimates reported below and in the 
 main text therefore use the total area approach. 

 Geographic subsampling strategy (inwards, outwards, random)  . It has been 
 indicated that the way the Species-Area Relationship (SAR) and Endemics-Area Relationship 
 (EAR) are created may create differences in the scaling parameter  z  . The plots and estimates 
 above were produced by randomly placing boxes of different size or area across the 
 distribution of the species. Often, however, either discovery of species or extinction happen 
 in certain patterns. For instance, we often imagine sampling an ecosystem concentrically 
 outwards from a focal point, whereas we may think of the extinction process of species area 
 reductions being concentrically inwards  (  61  )  . Because  these patterns seem of importance, we 
 also calculated the MAR and EMAR outwards from the latitude and longitude median of all 
 the samples in the map, moving outwardly until the map is filled (Fig. S17, Table S8). 
 Likewise, the inward pattern is conducted in an inverse manner. 

 Incomplete sampling of the species.  To check whether  the relationship holds with 
 few individuals of a species or limited geographic distributions, we compared the 
 species-wide MAR with that of subset populations. Downsampling the native distribution of 
 A. thaliana  to a region within North-East Spain (-2.00–4.25  degrees East, 36.52–42.97 
 degrees North), or to a region within Germany (2.69–13.73 degrees East, 50.0–52.0 degrees 
 North), and using only 1,000 SNPs, we recovered  z  MAR  =  0.423(0.233-0.614) for Spain and 
 0.525(0.242-0.807) for Germany, which were close to the estimate based on the whole 
 distribution (Table 1). This result is reassuring in that if migratory patterns are relatively 
 homogeneous, one may be able to estimate this parameter from a subset of the species 
 distribution. For heterogeneous population structure cases, we expect incomplete sampling to 
 produce unreliable estimates. 

 Number of genome-wide SNPs used.  To check whether  different numbers of SNPs 
 used for the analyses would lead to different  z  MAR  ,  we conducted analyses with random 
 subsets consisting of 100, 1,000, and 10,000 SNPs, replicated 3 times. Estimates had a 
 coefficient of variation of 4.7%, which is way below the standard error of typical estimates 
 (Table 1)  . 

 Locally-adaptive variants.  We then aimed to understand  the effect of utilizing SNPs 
 that appear to be related to adaptation. To study this, we utilized an outdoor 
 climate-manipulated experiment that recorded fitness data (survivorship and reproduction 
 output of seeds) for 515  Arabidopsis thaliana  ecotypes  part of the 1001 Genomes set in 8 
 environments (Exposito-Alonso, 2019). We devised two sets of alleles: 10,000 that were 
 negatively correlated with fitness in a Genome-Wide Association across 8 different 
 environments, and 10,000 alleles that were associated positively with fitness in one 
 environment but negatively in another (antagonistic pleiotropic). The MAR relationship was 
 computed as before and compared to the original random (putatively neutral) set of alleles 
 from the previous sections (Table S9). Although we see a trend that locally-adaptive alleles 
 have a slightly higher  z  , estimates overlap. The effects  seen here of having smaller  z  for 
 adaptive alleles than neutral variation could, however, be due to top GWA SNPs often being 
 ascertained to higher frequency than background SNPS. 
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 III.4 Local population extinction in Arabidopsis 

 Using the MAR framework, we can make projections of loss of mutations (or its inverse, the 
 remaining genetic diversity. By doing this, the known intuition is that with  z >1  (as from 
 EMAR) the decrease of diversity is much faster than the decrease of habitat, but with  z < 1 
 (as from MAR), there is a (desirable) slower dynamics of genetic loss. In the latter, despite 
 habitats disappearing, reservoirs of mutations distributed across different locations enable 
 conservation of certain variation. To study which one is more likely and to observe the 
 stochastic nature of genetic diversity loss, we simulated in silico population extinctions of 
 map cells from the Arabidopsis map (Fig. 1) and directly estimated from the genome matrix 
 of remaining individuals the remaining genetic diversity. These simulations were 
 implemented to capture different hypothesised patterns of extinction (see main text). All, 
 however, agree with the more hopeful estimate of  z  MAR  ≈  0.3. 

 To study the fit of the genetic loss predictions based on MAR relationships and the 
 results from computer simulations, we calculated a pseudo-  R  2  based on the squared 
 differences between the predicted line and the “observed” genetic loss as:  . 
 This results in a high fit  R  2  =  0.872 of the MAR, built  from random samples of distribution 
 areas, while the EMAR had a poor fit due to overestimation of genetic loss:  R  2  =  -0.710 
 (negative values indicate predictions are worse than the mean of the data). 

 III.5 Potential impacts of genetic loss in adaptability 

 Although likely imperfect, Genome-Wide Associations could help to understand the 
 relevance of mutations in different frequency classes in model organisms such as  Arabidopsis 
 thaliana  . Fig. S19 shows the site frequency spectrum  and a metric of the "total accumulated 
 effect in fitness" of the alleles in every bin. Effect sizes were retrieved from GWA on lifetime 
 fitness of 515 ecotypes in outdoor experiments  (  29  )  .  The average effect size across 8 fitness 
 GWA from 8 experimental combinations were used: high/low precipitation, high/low latitude 
 of outdoor stations, and high/low plant density. This exercise showcases the phenomenon that 
 low frequency variants often have strong effect sizes, which is expected under a stabilising 
 selection quantitative model  (  63  )  . Because low frequency  alleles will be the first to be lost 
 during a bottleneck (as would happen with the rapid extinction of populations of a species), 
 we may expect to lose variants that are related to fitness and thus potentially lose diversity 
 that could be advantageous in some environments. Alternatively, deleterious mutations are 
 also expected to be at low frequency, in which case would also make them more easily lost. 

 To further build intuition on the progress of extinction in relation to loss of genetic 
 diversity that is not neutral, we repeated warm edge extinction simulations with several 
 subsets of alleles (Fig. S20): randomly selected SNPs, SNPs that were associated positively 
 in 2 environments (low precipitation Spain and high precipitation Germany) (labelled 
 globally positive), and SNPs that were associated positively in one environment and 
 negatively in the other (labelled antagonistic pleiotropic or putatively locally-adaptive). This 
 supports our intuition that although putatively functional alleles (or alleles tightly linked to 
 such functional ones) may have slower loss dynamics than neutral variants due to a high 
 frequency and  z  MAR  , certain population extinction  patterns may actually lead to rapid loss of 
 potentially-adaptive genetic diversity (Fig. S20). The complexity of these patterns, together 
 with the evolutionary feedback created by lowering genetic standing variation that affects 
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 fitness, make the inference of adaptive capacity loss even more difficult than just inferring 
 the loss of genetic diversity itself. 

 Finally, we also retrieved allele effects of different traits (fitness under drought or 
 well-watered conditions, plant size, plant growth rate, seed dormancy, flowering time, and 
 water use efficiency [wue], data available at:  https://aragwas.1001genomes.org  , 
 https://arapheno.1001genomes.org/  ). For each trait, we extracted the 10,000 SNPs with the 
 lowest  P-  value and their effects  a  i  .  We then computed  two proxies of adaptability based on 
 these  i  =1…10,000 variants. The additive genetic variance:  Va=  ∑  i  p  i  (1-p  i  )a  i  2  ; which also 
 accounts for the frequency of variants  p  i  , as variants  of intermediate frequency contribute 
 more to the population trait variance than rare variants. And a simpler metric that just sums 
 the cumulative summed effects of variants,  ∑  i  a  2 

 i  .  We then visualized these proxies of 
 adaptability that each trait could confer in a population whose trait is under selection, and 
 how this is eroded in warm edge extinctions (Fig. S21). 

 III.6 Case study of a massive natural bottleneck 

 A recent colonisation of North America by  Arabidopsis  thaliana  can help us understand the 
 recovery of genetic variation. Whole-genome sequencing of 100 specimens of North 
 American  A. thaliana  indicates that it migrated from  its native range of Europe to North 
 America in the 17th century, and began spreading across the continent from a 
 genetically-homogeneous population  (  64  )  . Despite ideal  conditions to re-gain genetic 
 diversity—a continental population expansion aided by human travel  (  65  ,  66  )  —only ~8,000 
 new mutations were detected through spontaneous accumulation, equivalent to only ~0.067% 
 of the species-wide native genetic diversity. Because most of these mutations are at very low 
 frequency, as expected during population expansion, the scaling of genetic diversity with area 
 is approximately 1 (  z  MAR  = 1.025 [CI95%: 0.878 -  1.173]). 
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 IV. The mutations-area relationship in diverse species 

 Every dataset was retrieved online either from the published article in the form of VCF or 
 fastq files, or provided by the study authors upon request. All datasets were first transformed 
 into PLINK files using PLINK v1.9  (  67  )  . For computational  efficiency, and since we showed 
 random subsampling does not appear to affect calculations of  z  MAR  (Section III.3), we 
 conducted all analyses with up to 10,000 randomly selected SNPs for each species sampled 
 genome-wide, or in the largest chromosome for those species with large genomes. We aim to 
 use mostly unfiltered SNP datasets to avoid ascertainment biased toward intermediate 
 frequency SNPs, and therefore we did not apply a MAF filter for any analyses. By default, 
 PLINK transforms SNP matrices into biallelic (if multiallelic, it takes the two most common 
 alleles). Although the preservation of structural genetic variation may also be relevant and 
 may have important consequences in adaptation  (  68  )  ,  we do not expect dramatic differences 
 in their scaling relationship compared to biallelic SNPs, as their SFS are relatively similar 
 (Structural variants may show a skew to lower frequency, resulting in steeper  z  MAR  . By 
 excluding those, our analyses may be conservative). In order to properly characterise the 
 geographic distribution of a mutation using all available geo-tagged individuals, we filtered 
 for genotyping rate (plink --geno), and the final value is reported per dataset. 

 Details for dataset processing or homogenization are described below. 

 -  The 1001 Arabidopsis Genomes Consortium  (  19  )  generated  a WGS Illumina 
 sequencing dataset of  Arabidopsis thaliana  comprising  1,135 individuals and 
 11,769,920 SNPs. The VCF with the data is available at:  https://1001genomes.org  . 
 The raw sequencing data is available at 
 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA273563  .  These included recently 
 colonised regions such as North America or Japan. Analyses of  z  MAR  were calculated 
 only for the native range, which comprises most of the species diversity (>99%) and 
 1001 individuals. For computational efficiency, we conducted analyses using 
 randomly sampled SNPs from chromosome 1, as we did not observe any difference 
 when sampling from other chromosomes. A number of MAR approaches were tested 
 in this species (section III). For homogeneity, the final reported estimate (Table 1) was 
 conducted following the same procedures as other species with a random sample of 
 10,000 SNPs. 

 -  Lucek & Willi  (  69  )  recently published a dataset of  WGS Illumina sequencing 108 
 Arabidopsis lyrata  individuals from North America,  which the authors directly shared 
 as a VCF. The raw data is available at 
 https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB30473  .  We retrieved the 
 latitude/longitude data from the supplemental material. We applied a genotyping rate 
 filter ending with a dataset of 0.955431 genotyping rate. 10,000 SNPs were subsetted 
 at random from the genome-wide data. 

 -  Kreiner et al.  (  70  )  WGS Illumina sequenced 165 individuals  of  Amaranthus 
 tuberculatus  . The raw data is available in the link 
 https://www.ebi.ac.uk/ena/browser/view/PRJEB31711  .  The authors provided a VCF. 
 Overall, 155 individuals contained latitude and longitude information and were kept 
 for the analyses. The genotyping rate was 0.98162 and we subsetted randomly 10,000 
 SNPs. 
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 -  Supple et al.  (  71  )  generated a dataset of  Eucalyptus melliodora  of 275 individuals 
 from 36 broadly distributed populations. The dataset was produced by Illumina 
 sequence Genotyping-by-Sequencing (GBS) libraries digested with ApeKI as in 
 Elshire et al. (2011). The raw data is available at 
 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA413429/  .  The authors provided the 
 dataset in PLINK format. Genotyping rate was 0.769807 but we did not apply a 
 further filter to avoid reducing the total number of variants. We conducted analyses 
 with all 9378 SNPs. The genotyping rate in this dataset is likely not problematic as the 
 total number of GPS locations is 36, with multiple individuals sampled closely. This 
 sampling scheme probably allows to characterise an allele's distribution correctly 
 despite the lower genotyping rate. 

 -  Vallejo-Marin et al.  (  72  )  generated a GBS dataset  of 521 Mimulus plants, with 286 
 samples being  Mimulus guttatus  from its native distribution.  Libraries for 
 Genotyping-By-Sequencing were prepared with PstI enzyme as described in Twyford 
 & Friedman (2015) and sequenced using Illumina. The VCF of this dataset is 
 available at  http://hdl.handle.net/11667/168  and was  also directly shared by the 
 authors. After applying a filtering for missingness, we ended up with a genotyping 
 rate of 0.904192 and 1,498 SNPs, which were used for the analyses. 

 -  Lovell & MacQueen  (  73  )  generated a WGS Illumina sequencing  dataset of 
 Switchgrass,  Panicum virgatum  , of a collection of  732 individuals and 33,905,044 
 variants. The raw data is available at: 
 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA622568  .  The authors provided a VCF 
 file and latitude/longitude tables. 576 individuals were from natural collections. The 
 dataset contains also other collections such as cultivars, which were not used to build 
 the MAR. The genotyping rate was 0.976393 and analyses were conducted with 
 10,000 SNPs drawn from the largest chromosome. 

 -  MacLachlan et al.  (  74  )  generated a SNP chip dataset  of  Pinus contorta  comprising 
 929 trees with latitude and longitude information and 32,449 SNPs. Genotyping was 
 conducted with the AdapTree lodgepole pine Affymetrix Axiom 50,298 SNP array 
 and data was provided in the supplemental material of the paper along with custom 
 scripts to parse the data. The database is available at 
 https://datadryad.org/stash/dataset/doi:10.5061/dryad.ncjsxkstp  .  The genome matrix 
 was transformed into PLINK. The genotyping rate was 0.959146, and analyses were 
 conducted with 10,000 randomly drawn SNPs. The fact that this dataset was created 
 with ascertained SNPs likely generates a frequency bias. In Fig. S22, one can see that 
 this may be a problem to calculate  z  MAR  , as the mutations~area  graph appears 
 nonlinear and rapidly saturates. This confirms the expectation that SNPs are 
 ascertained to be common, as they are discovered immediately with very few samples. 

 -  Tuskan et al.  (  75  )  WGS Illumina sequenced 882  Populus  trichocarpa  trees. The 
 dataset includes 28,342,826 SNPs. The data is available under this DOI 
 https://doi.ccs.ornl.gov/ui/doi/55  which redirects  to a globus data sharing platform. 
 The authors provided the dataset as a VCF along with latitude/longitude coordinates. 
 This dataset was downsampled to the first chromosome. The genotyping rate was 
 0.921191, and 10,000 SNPs were randomly sampled for analyses. 
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 -  The Anopheles gambiae 1000 Genomes Consortium  (  76  )  (Phase 2) produced 
 Whole-Genome Illumina sequencing data for 1142 wild-caught mosquitoes of 
 Anopheles gambiae  . All raw and processed data are  available through 
 https://www.malariagen.net/data  . We downloaded a VCF  and latitude/longitude 
 coordinate files. The VCF was filtered for genotyping rate ending up at a 0.998895 
 rate. For efficiency, 10,000 randomly-selected SNPs from the VCF of the largest 
 chromosome 2L were used for analyses downstream. 

 -  Fuller et al.  (  77  )  WGS Illumina sequenced 253 coral  individuals of  Acropora 
 millepora  in 12 reefs. The dataset was downloaded  as fastq files from the published 
 online material from  https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA593014  , 
 and SNPs were called as described in the supplemental material ending with 
 17,931,448, which were filtered to achieve a genotyping rate of 0.935709 for a total of 
 2,512 SNPs, which were used in the analyses. 

 -  Ruegg et al.  (  78  )  generated a dataset of 219 birds  Empidonax traillii  , for which 199 
 could be matched with geographic coordinates. SNPs were ascertained from several 
 publications using RAD seq and Fluidigm 96.96 IFC described and available in their 
 repository  https://github.com/eriqande/ruegg-et-al-wifl-genoscape  .  A total of 349,014 
 SNPs were parsed using their custom scripts and we transformed them into PLINK 
 files. A genotyping rate filter was applied ending with a 0.96061 rate and 195,700 
 SNPs. 10,000 SNPs were selected at random for downstream analyses. Similarly, as 
 with the  Pinus contorta  , the incorporation of some  ascertained SNPs in the dataset 
 based on Fluidigm technology could lead to quick saturation of the MAR curve (Fig. 
 S22). 

 -  Bay et al.  (  79  )  generated a dataset of 199  Setophaga  petechia  birds  using a Restriction 
 site–associated DNA sequencing (RAD-Seq). The raw data is available at 
 https://www.ncbi.nlm.nih.gov/bioproject/421926  . The  authors shared a VCF file, with 
 a genotyping rate of 0.962419 and a total of 104,711 SNPs. 10,000 SNPs were 
 selected at random for downstream analyses. 

 -  Kingsley et al.  (  80  )  produced a dataset of 80  Peromyscus  maniculatus  deermice, for 
 which 78 could be matched with geographic locations. The SNP dataset was produced 
 using MY-select capture followed by Illumina sequencing. The VCF and PLINK files 
 are available via Figshare at     https://doi.org/10.6084/m9.figshare.1541235  .  The dataset 
 included a total of 14,076 variants which were filtered to achieve a genotyping rate of 
 0.940411 for 2,946 SNPs, which were used in subsequent analyses. 

 -  We identified two published datasets for wolves. Smeds et al.  (  81  )  produced a WGS 
 Illumina sequencing dataset and combined it with pre-existing datasets for a total of 
 349 local dog breeds and wolves, of which 230 were  Canis lupus  from natural 
 populations. However, these samples did not have GPS locations assigned. The 
 second dataset we identified was from Schweizer et al.  (  82  )  , which contained 107 
 geo-tagged grey wolves from North America using a capture and resequencing 
 approach for 1040 genes. The raw data is available at 
 https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP065570  ,  and meta-data along 
 with a VCF area available at  https://doi.org/10.1111/mec.13467  .  This data contained 
 13,092 SNPs at 0.993061 calling rate, and a better geographic resolution. We report 
 data for the second dataset. 
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 -  The 1000 Genome Consortium  (  83  )  created WGS Illumina  sequencing for over 2,504 
 humans and 24 unique geographic locations. We downloaded chromosome 1 from 
 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/ 
 1000G2504highcoverage/working/20190425NYGCGATK/  and  gathered the 
 population locations from 
 https://www.internationalgenome.org/data-portal/population  .  To conduct analyses, we 
 subsampled 10,000 SNPs at genotping rate 0.991069. 

 -  Palacio-Mejia  (  84  )  used WGS for 591  Panicum hallii  individuals to sequence at low 
 coverage. The raw data is available at 
 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA390994  .  The authors shared an 
 unfiltered VCF of 45,589 SNPs. Because of the low-coverage, stringent filters of 
 calling rates as used for other species would lead to removing all SNPs, and we settled 
 on a genotyping rate of 0.825824 for 242 variants, all of which were used for 
 downstream analyses. 

 -  Royer et al.  (  85  )  produced a SNP dataset using RAD-Seq  based 
 Genotyping-By-Sequencing of 290  Yucca brevifolia  (Joshua  Tree) individuals. A total 
 of 10,695 SNPs with a genotyping rate of 0.897501 wre used for the analyses. The 
 data was available at Dryad 
 https://datadryad.org/stash/dataset/doi%253A10.5061%252Fdryad.7pj4t  . 

 -  Kapun et al.  (  86  )  produced a WGS dataset of pooled  Drosophila melanogaster  , 
 sequencing ~80 pooled individuals from each of 271 populations as part of the 
 European "Drosophila Evolution over Space and Time" (DEST) project. A total of 
 5,019 shared SNPs with a genotyping rate of 0.937697 were used for analyses. The 
 dataset, both raw and processed, is available through  https://dest.bio  . 

 -  Di Santo et al.  (  87  )  studied the highly-threatened  species  Pinus torreyana  . They used 
 Genotyping-by-Sequencing of 242 individuals of the last remaining populations. The 
 dataset is available at NCBI:  https://www.ncbi.nlm.nih.gov/bioproject/PRJNA840943  ; 
 and the authors additionally shared a VCF. From a total set of 166,564 SNPs with a 
 genotyping rate of 0.964632, 10,000 were randomly selected for our analyses. 

 -  von Seth et al.  (  88  )  studied the highly-threatened  species  Dicerorhinus sumatrensis  . 
 They used Illumina WGS of 16 individuals of the last remaining populations. The raw 
 data is available at     https://www.ebi.ac.uk/ena/browser/view/PRJEB35511  .  The 
 authors shared a VCF. In total, this comprises a set of 8,870,513 SNPs, with a 
 genotyping rate of 0.854862, which we did not further filter due to the small number 
 of individuals. For computational efficiency we selected 10,000 SNPs from the largest 
 chromosome. 

 Information and results per species are gathered in Table 1 and its extended version, Table 
 S10, and the average  z  MAR  across species are provided  in Table S11. 

 IV.1 Exclusion of species from global averages 
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 To avoid contaminating across-species averages of  z  MAR  with estimates of species whose data 
 we do not fully trust, we conducted global averages excluding species for which we are not 
 confident  z  MAR  reflects the correct species diversity-area  relationships. 

 Pinus contorta  showed a lower  z  MAR  than what is expected  in a theoretical baseline from 
 individual sampling (section II). This is most likely due to this being the only species for 
 which SNPs were previously ascertained to be intermediate frequency (i.e. the genome 
 technology was a SNP chip). This alters SFS, so we are not confident the  z  MAR  is the true 
 parameter of the species. 

 Yucca brevifolia  was a dense sampling of several local  populations within a constrained area 
 that is a hybrid zone. Since this species was not sampled range-wide we do not feel confident 
 to include it in downstream analyses. The species also has a lower  z  than expected (Fig. S5) 

 Pinus torreyana  only has two wild populations left,  and therefore the MAR is based on two 
 area sizes (Fig. S22). Because this is such a threatened species with already most of its range 
 loss, we do not have confidence in the  z  parameter. 

 Dicerorhinus sumatrensis  has only ~30 estimated adult  individuals in the wild. Again we do 
 not have confidence in the z parameter in such extinction-edge cases. 

 Homo sapiens  . We exclude our own species. 

 IV.2 Differences across species in MAR 

 Although we could not see any obvious patterns relating  z  MAR  with certain groups of species 
 (Table 1), we wondered whether any life history trait of the species analysed could explain 
 the variation we observed (see Table S12 of traits). An ANOVA did not show any significant 
 relationship. Because we know theoretically this parameter must be related to the degree of 
 dispersal ability of genotypes of a species relative to the whole species geographic range, we 
 expect traits involved in determining these to be good predictors. Future work will be 
 necessary to validate this, as the sample size (n=19) may not permit enough power to detect 
 these expected patterns. 

 While no association between life history and  z  MAR  was found (Table S13), this may be 
 due to limited power, as the sample size of species analysed here is still small, n=20. Further 
 studies expanding the numbers of species will be necessary to confirm or reject this expected 
 association. 

 24 



 V. An estimate of global genetic diversity loss 

 Using the approach described in section II.4, we generated a number of estimates either per 
 ecosystem or per species. All estimates below tried to be conservative, and thus we always 
 used the scaled  z  MAR  values (section II.3.2.) 

 V.1 Estimates of ecosystem area losses 

 Millenium Ecosystem Assessment 

 Ecosystem transformation has been tracked over decades. We extracted ecosystem 
 transformations from the Millennium Ecosystem Assessment  (  22  )  , which estimated 
 ecosystem transformations from presumably native systems to cultivated or urban areas by 
 GLC2000 land cover dataset (Table S14). The forest/woodland is calculated as percentage 
 change between potential vegetation from WWF ecoregions to the current actual 
 forest/woodland areas from GLC2000. These provide bulk ecosystem reductions, not for a 
 given species, but may be a good proxy for an average across species. 

 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Servies 

 The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 
 (IPBES) recently used a PBL satellite product from the Netherlands Environmental 
 Assessment Agency (  https://www.pbl.nl/en/nature-and-biodiversity  )  to study the % of area 
 ecosystem transformation in the world (Table S15). This provides an updated estimate to the 
 Millennium Assessment as well as projections under several Shared Socioeconomic 
 Pathways (1-3) for 2050. These were reported per region as of 2010, and for projections to 
 2050 (scenario SSP2). Instead of direct area, the metric is a composite of land use 
 information to predict Mean Species Abundance (MSA), a measure of the size of populations 
 of wild organisms as a percentage of their inferred abundance in their natural state (% MSA). 

 Land Use Harmonization 

 A global transformation metric can also be captured by the most updated land use 
 transformation data, the Land Use Harmonization 2 (release v2e for 2015-2011 and release 
 v2h for baseline 1850-2015)  (  23  )  . Baseline transformation  of primary ecosystems was 
 calculated subtracting the total area covered by primary forest (primf) and primary non-forest 
 (primn) variables between year 1850 layer (rough baseline before large-scale post-industrial 
 impacts) and the present, 2015, as  1-A  2015  / A  1850  (Table S16)  . 

 Analyses that use projections to mid-21  st  century  were conducted following  (  89  )  , 
 summing over all transitions from primary forest (primf), primary non-forest (primn), 
 secondary forest (secdf) and secondary non-forest (secdn) lands to any other category for all 
 years within the 2015-2050 period (see Table S10). 

 Global Forest Watch 

 We searched for timely estimates of forest reduction (based on vegetation cover) reported in 
 the Global Forest Watch website:  globalforestwatch.org/dashboards/global/  (accessed June 
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 2021). From 2002 to 2020, there has been a global tree cover loss of 10%, with an annual tree 
 cover loss of 0.6-1.1%. 

 IUCN Red List 

 We utilized  https://www.iucnredlist.org  to conduct  separate searches of “plants”, 
 “amphibians”, “birds”, “mammals”, and downloaded all records (n=82,801) with all their 
 descriptions of classifications and threats using the download results tool. Table 17 shows a 
 summary of all species. We separated species numbers by the guidelines IUCN Red List v15 
 (  24  )  . Several criteria are used to classify species  into different categories (e.g. vulnerable, 
 endangered, etc.). Criteria  A1, A2-4, C1 all have quantitative thresholds of % of population 
 reduction. IUCN defines population as all individuals across the range, and all subpopulations 
 (individuals grouped geographically) need to be assessed in the population reduction criteria. 
 Of the area criteria, A2-4 are the most common (Table S17), and most include evidence based 
 on evidence of extent or area of occurrence (subcriteria “c”), and hence can provide rough 
 estimates of area reduction. Therefore, we use the thresholds necessary to meet A2-4 
 summarized in Table S17 and in Fig. 3 in main text. Note: Near Threatened (NT) do not have 
 a specific criteria, but species are granted this classification when they do not qualify for 
 Vulnerable (VU) and at the same time cannot be classified as Least Concern (LC) or Data 
 Deficient (DD). The only percentage of area reduction provided by IUCN for this category is 
 20-25% loss (see details in  (  24  )  ). 

 Map Of Life 

 Current projection trends are available in the Map Of Life tools for mammals, birds, and 
 amphibians (mol.org, see example 
 https://mol.org/species/habitat-trend/Dicerorhinus_sumatrensis  )  and summarized in  (  25  )  . We 
 used the habitat trends as 1-  A  2017  / A  2015  in Fig.  3, which show ranges from 0 to 100%, with 
 an average of 5.9%. 

 V.2 A global estimate of genetic loss 

 Taking the estimates and standard error of  z  MAR  across  species, and the world's reduction of 
 ecosystems we can calculate the fraction of genetic diversity reduction following the MAR 
 equation (section II.4), giving a range of estimates (Table S18). 

 Assuming the average  z  MAR  , and utilising tree cover  from the Global Forest Watch 
 (https://www.globalforestwatch.org), which estimates 0.6-1.1% of transformation per year 
 across Canada, United States and Australia, we extrapolated genetic diversity loss in the next 
 50 years for tree species to be 8-15% genetic diversity loss. 

 Assuming that the calculated  z  MAR  estimates (Table  1) are representative of plant 
 species, we conducted an experiment to create a distribution of % of genetic diversity loss in 
 threatened species. We used the number of species in each IUCN category (Table S17) for a 
 total of 54,127 plant species. For plant species, one of the evaluation criteria of percentage of 
 population loss likely translates faithfully to area reduction in the species. Thus, the 
 proportion of species per category gives a discrete probability distribution of the ranges of 
 percentage of area loss: P(0-29%)=0.596, P(30-49%)=0.156, P(50-79%)=0.159, 
 P(80-99%)=0.086, P(99%-100%)=0.003. Using a simulation-based sampling approach, we 
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 drew 350,000 random area reductions  A  t  / A  t-1  from the previous distribution and a  z  MAR  from 
 the mean and variance of our estimates from Table 1 for plants. These were plugged into the 
 MAR equation (Section II.4) to calculate the percentage of genetic diversity loss of these 
 350,000 random draws. The resulting distribution had a median and interquartile range of 
 17.53 % [7.51- 31.82].. 

 Using the Land Use Harmonization 2 dataset, we also create per-species predictions 
 based on the % transformation of each of the sampled regions per species (Table S14). As 
 before, the land use transformations that merit be considered area losses are all transitions 
 from primary forest (primf), primary non-forest (primn), secondary forest (secdf) and 
 secondary non-forest (secdn) lands to any other category. Taking all the locations where each 
 species has been sampled, we extracted the predicted % of land use change per cell and 
 summed over all cells where individuals had been sampled (we call this LUH  2  change ‘50, 
 see column in Table S10). We also produced the alternative area loss estimate taking that at 
 least 10% predicted habitat transformation for a grid cell renders the entire area of that grid 
 cell as impacted or lost  (we call this LUH  2  >10%  change ‘50). These per-species area losses, 
 in combination with the matched  z  MAR  , provided a range  of potential loss estimates to 2050 
 ranging 0-36% depending on the species (Table S10). 

 V.3 Community ecology simulations and MAR 

 To test whether intermediate levels of MAR would be expected across species in entire 
 ecosystems, we conducted community assembly simulations of ~100-500 species following 
 the Neutral Theory of Biodiversity  (  34  ,  68  )  and coalescent  simulations  (  49  )  using the 
 software MESS  (  90  )  . These simulations are computationally  demanding and could not run in 
 a complete 2D spatial grid. Instead, they were simulated in a mainland-island system, with 
 islands of increasing areas. The community forms by species colonising an empty island 
 according to Hubbell's Unified Neutral Theory of Biodiversity and Biogeography (UNTB), 
 where all species are equally likely to colonise and persist in the local community. Continued 
 colonisation and migration to the local community continues to bring in new species that may 
 or may not survive, while also continuously bringing in individuals of species already in the 
 local community. The community assembly process ends when the community has reached 
 an equilibrium denoted as the balance between local extinction and new species dispersing 
 into the area (Hubbell 2001). Once the forward-time process has ended, we simulate the 
 coalescent history of each species backward in time. For this, MESS considers the population 
 size, divergence time, and migration rates of the meta and local communities. These 
 coalescent simulations provide us with genetic data and ultimately diversity estimates for 
 each species in the community. 

 We simulated 100 MESS communities, and for each community the size of the local 
 community was varied from 1K to 100K. We varied the size of communities to emulate 
 variation in area occupied by a given community because we assume as the number of 
 individuals in a community increases from 1,000 to 100,000, so does the area occupied. All 
 other parameters were kept consistent across each of these community simulations, and most 
 remained at their default value. The parameters changed were the length of the sequences 
 simulated for the coalescent-based simulations, which was fixed at 10,000 bp, and the 
 migration rate, which was fixed at 0.01. 
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 The simulation output was used to then compute a single  z  SAR  for the system as 
 S=cA  zSAR  ,  and one  z  MAR  for each species in the same way,  M=cA  zMAR  . This resulted in the 
 distribution of  z  MAR  from Fig. S24. This confirmed  that we can recover typical  z  SAR  and  z  MAR 

 values from completely stochastic neutral yet spatially structured systems such as species in 
 communities and mutations in populations of a species. 

 V.4 The nested species extinction and genetic diversity loss processes 

 Finally, we worried that our estimates of V.2 would be mistaken as overestimates. In fact, we 
 believe these may be underestimated. Recent policy proposals for the United Nations’ 
 Sustainability Goals emphasize that the target of protecting 90% of species genetic diversity 
 for all species cannot leave the already-extinct species behind  (  10  )  (That is, one cannot 
 protect 90% of species and leave 10% to become extinct to meet this goal). This clearly 
 exemplifies a problem in conservation biology that what researchers can study is (most of the 
 time) what has escaped extinction, and therefore if we do not account for extinct species in 
 our overall estimates of genetic diversity loss we may naively think ecosystems have not 
 suffered genetic diversity loss (i.e. in the extreme scenario, an ecosystem that has lost all but 
 one abundant species may not really appear genetically eroded if such species is in good 
 shape). 

 We then created spatial simulations in R where 1,000 species are distributed in 
 100x100 grid cells following a UNTB abundance distribution and then proceeded with an 
 edge extinction of the ecosystem (see Fig. S25 for a cartoon). 

 Two extreme types of distributions of species can be imagined: species are randomly 
 placed in space, or species are found mostly in perfectly contiguous ranges (We ended up 
 using as an example a simulation with 85% of the individuals of a species found in a core 
 square continuous distribution and 15% found outside that core in fragmented observations, 
 as this scenario produced the canonical SAR of  z  ~0.3).  Spatial structure interestingly creates 
 two extreme distributions of area reductions across species (Fig. S26): random placement of 
 cell habitats essentially show that the average area reduction per ecosystem is followed by 
 most species, while autocorrelated placement of cell habitats create a U distribution in area 
 reductions, where at the beginning of the extinction process most species have not 
 experienced any impact (Fig. S26B left) but at the end of ecosystem reduction virtually all 
 species are already extinct (Note we may be at the beginning of S26B process given the data 
 from IUCN, Fig 3C). 

 To study the consequence of the above differential area loss and the effect of some 
 species going extinct on the total ecosystem genetic diversity, we conducted the next analysis: 
 For extant species, we assumed they would lose genetic diversity following the MAR 
 relationship (section II.4), with all species having  z  MAR  = 0.3  for simplicity (i.e. all species 
 lose genetic diversity at the same rate). For extinct species (100% of their area reduced), we 
 considered genetic diversity loss was 100%. The compound total genetic diversity loss would 
 then just be the sum of those  (Of course, in reality  species may vary in their 
 genome-wide diversity average, and we could for instance use Watterson’s  (see section 
 II.2) to scale the total loss of genetic diversity in the ecosystem accounting for different basal 
 level of diversity per species:  ). Interestingly,  if we calculate the  z  of the slope of 
 compound genetic diversity across species in an ecosystem it is much larger than MAR or 
 SAR alone:  z  compunded  =  0.6 (Fig. S27). 
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 SUPPLEMENTAL FIGURES 

 Fig. S1 | Example of typical plots used for species abundance curve studies 
 Due to their strong skew, Species Abundance Curves are often plotted using the Preston plot (left) where the x axis represents 
 bins of log2 abundances (also referred to as octaves), or using the Whittaker plot (right) where the x axis is the rank of each 
 species in a dataset and y axis the species' relative abundance. 
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 Fig. S2 | Summary of theoretical models of Species Abundance Curves. 
 Five niche partitioning or statistical models shown in a Whittaker plot. The different models expect different levels of 
 evenness in abundance across the species in the community, from the lowest (geometric series) to the highest (log-normal). 

 35 



 Fig. S3 | Example of a Species-Area Relationship in Galapagos Islands 
 Classic species richness dataset from the Galapagos Islands (Preston, 1962). It depicts species richness as a function of 
 island area in a log-log plot. 

 36 



 Fig. S4 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum 
 Left is the Probability Mass Function of the log-series (p=0.999), center is the SFS (N=100, c=1), and right is 
 the log-series-based abundance of species (alpha=100, N=10000). 
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 Fig. S5 | Expected ranges of z  MAR  given sample sizes. 
 For increasing numbers of individuals sampled, we plot the expected mean z  MAR  under two theoretical  trends of a 
 migration-limited (green) and a panmictic (purple) species (Purple dots indicate averages from SLiM simulations under 
 panmixia to confirm the theoretical trend based on the derivative approach above). In black,  z  MAR  and  95% Confidence 
 Interval of species analyzed in section IV are plotted (see section for details). 
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 Fig. S6 | msprime 2D deme simulations and the mutations-area relationship 
 Simulations with different burn-in and migration rates under neutrality, and their corresponding zmar. 
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 Fig. S7 | SLiM population genetic simulations in 2D with selection and local adaptation 
 Simulations were carried out with different combinations of migration rates and strength of antagonistic 
 pleiotropic selection at 12 QTLs. (A) Marginal relationship between z  MAR  with the strength of spatially-varying 
 selection s. (B) Marginal relationship between z  MAR  with the migration rate m. 
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 Fig. S8 | SLiM population genetic simulations in 2D with purifying selection 
 Simulations were carried out with varying strengths of purifying selection (|s| range from 0.0 to 0.1) at coding positions, 
 representing about 29% of the genome. Different values of recombination rate were also used in all pairwise combinations 
 with |s|. 

 41 



 Fig. S9 | Continuous space SLiM population genetic simulations 
 At 19 timepoints leading up to extinction, 1,000 individuals were sampled randomly in continuous space to quantify diversity 
 loss (black line). The prediction of MAR (dashed line) using the starting  z  MAR  seemed to follow the real  trend better than the 
 baseline of just loss of individuals(dashed line). This suggests that even if  z  MAR  varies during the  population extinction 
 process, it is relevant to understand genetic loss by area reduction. We also tracked metrics of population structure (  z  MAR  , 
 F  ST  ) and a proxy of adaptive capacity (Va), which  showed qualitatively similar patterns as the GWA-based trends (Fig S21). 
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 Fig. S10 | SLiM population genetic simulations in 2D comparing F  ST  and z  MAR 
 Neutral SLiM simulations with different degrees of migration. (A) Hudson's F  ST  across populations with  different area 
 subsamples. Following the expectation of the isolation-by-distance pattern, as the distance between the farthest demes in the 
 subsample increases, F  ST  becomes larger and saturates  at large distances. (B) The mutations-area relationship. (C) 
 Comparison between F  ST  and z  MAR  . 
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 Fig. S11 | 2D stepping-stone msprime simulations with extinction and recovery 
 (A) Recovery of genetic diversity (number mutations) after loss of a fraction of the population. (B) Recovery of genetic 
 diversity after instantaneous loss of a fraction of the population and consecutive repopulation. 
 *Simulations with number of generations until recovery that are exceedingly large are assigned a value of 1,500, as none are 
 realistic for current conservation timelines. 
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 Fig. S12 | Mutation abundance study in A. thaliana 
 (A) Site Frequency Spectrum (SFS). (B) Preston plot of mutation abundances. (C) Whittaker plot of mutation rank 
 abundances. 
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 Fig. S13 | Fit of mutation abundance study in A. thaliana with different SAD models 
 Representative models from Table S3 are plotted along with the observed frequency of 11,769,920 mutations. 
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 Fig. S14 | The mutations-area and endemic-mutations-area relationships in  A. thaliana. 
 Dividing  A. thaliana  native geographic distribution  into a 1 degree latitude/longitude grid, square areas with 1 degree 
 side-length to 36 degrees side-length were randomly placed (n=100 for each size) across the distribution, and genetic 
 diversity metrics were computed to produce the (A) Mutations-Area Relationship and (B) Endemic-Mutations Area 
 relationship. 
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 Fig. S15 | Cartoon of raster sampling to build the MAR 
 Map of mock samples of a species projected into a raster. Grey scale indicates the number of samples per grid cell. Red 
 boxes exemplify the process of spatial subsampling of increasing area to build the MAR relationship. Two example grid sizes 
 were created for illustrative purposes: (A) Small grid size or high spatial resolution. (B) Large grid size or low spatial 
 resolution. 
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 Fig. S16 | MAR comparison with different area calculations. 
 (A) Using total area, (B) using grid cell sum with at least one sample. For 1 degree latitude/longitude grid cell. 
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 Fig. S17 | MAR and EMAR in Arabidopsis thaliana using outward and inward sampling. 
 Dividing A. thaliana native distribution in 1 degree lat/long grid, a square area of 1 degree was placed at the median of the 
 sampling range and was expanded iteratively by 1 degree lat/long until all the area of the distribution was covered. (A-B) 
 MAR and EMAR using a typical outward sampling. (C-D) MAR and EMAR using an inward sampling. The latter may not be 
 a common process of sample collection, but it is common for extinction progress. 
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 Fig. S18 | Loss of mutations with habitat loss in A. thaliana. 
 Predictions based on MAR and EMAR functions and in silico extinction stochastic simulations in A. thaliana. 
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 Fig. S19 | Bias of low frequency mutations and effect size for fitness traits in A. thaliana. 
 Grey bars represent the site frequency spectrum (scaled for visualisation purposes). The black dots represent the mean 
 absolute effects of alleles as estimated from GWAs with 515 accessions scored for fitness traits in 8 outdoor experiments. 
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 Fig. S20 | Simulations illustrating the potential loss of locally-adaptive mutations in A. thaliana. 
 Simulations of extinction using multiple patterns of population losses with different subsets of alleles ascertained to show 
 positive associations in fitness GWA in two outdoor experiments (green), positive associations in one environment (e.g. low 
 precipitation) but negative in a second environment (e.g. high precipitation) or vice versa (green). These were compared to a 
 random set (grey). 
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 Fig. S21| Extinction simulations showing proxies of adaptive capacity of A. thaliana. 
 Using estimated allele effect sizes from 10,000 SNPs in the 1% P-value tails of several Genome-Wide Associations, we show 
 (A) Percentage of change of Va as a proxy of adaptive potential and (B) raw square sum of allele effects to showcase the 
 inflating effect of intermediate frequency alleles. Grey background shape indicates the minimum and maximum boundaries 
 of trajectories created by replicated frequency-matched non-effect sets of SNPs (one per GWA). The trajectories of some 
 effect alleles appear to show faster loss than the non-effect background trajectories. 
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 Fig. S22 | MAR summaries across species. 
 For each species we plot (left) the map of sample density in space and (right) the mutations-area relationship. (The locations 
 of 16 Dicerorhinus sumatrensis are unknown so only Sumatra is shown. Pinus torreyana was only found in two extant 
 populations). 
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 Fig. S23 | The parameter space of genetic diversity loss, extended 
 (A) The theoretical space of genetic diversity loss. z  MAR  values and the 95% CI (unscaled, for scaled  z  * 

 MAR  see Fig. 3 in main 
 text) for each species. Blue horizontal lines correspond to ecosystem transformations from the Millennium Assessment (light 
 blue) and IPBES Assessment (dark blue). 
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 Fig. S24 | z  MAR  calculated from MESS eco-evolutionary  simulations 
 Using the MESS framework of a mainland-island model with different island sizes, z  MAR  per species is  recovered. The 
 stochastic nature of the simulations results in each species having different abundances and migration histories that change 
 the scaling value. Values were typically around 0.3. Rarely some species had values above 1, which appear could be noisy 
 estimates from recently colonising species in the simulations. 
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 Fig. S25 | Cartoon of nested extinction of species and genetic diversity loss. 
 An ecosystem with multiple species within it (left), distributed in space, with few species broadly distributed and many 
 narrowly distributed. Moving one level of biological organization lower, mutations within species (right) are also spatially 
 distributed with many narrowly distributed. As extinction happens (red line moving bottom to top), all species below the red 
 line go extinct, but only the mutations within species 1 below the line are lost, while mutations above the line remain. Species 
 3 has already become extinct, and therefore also all the mutations within it.. 
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 Fig. S26 | The distribution of per-species area lost and total ecosystem extinction with 1000 species 
 Two ecosystems of 100x100 cells with 1000 species. Species are either randomly distributed in cells (A) or spatially 
 autocorrelated with occupying mostly contiguous cells (B). As the extinction process wipes out part of the ecosystem 
 (snapshots are provided at 5%, 50%, and 95%), the area loss per species (and hence genetic diversity lost) is tracked. In (A) 
 the average area lost per species is roughly the total reduction of the ecosystem, whereas in (B) the distribution is U shaped 
 (note the log-scaled y-axis). While in (B) the mean area lost in the distribution correctly captures the area loss of the 
 ecosystem, per species losses are highly uneven. 
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 Fig. S27 | Numeric simulation of nested species and genetic diversity loss. 
 (A) Simulating the extinction of an ecosystem with 1,000 species that follow a log-normal species abundance curve. 
 Extinction of the ecosystem creates a curve of species loss of z~0.3 (grey). Likewise, each species trajectory (light red, 15 
 species drawn randomly) follows a simulated genetic diversity loss of  z  MAR  ~0.3 as they lose area. Because  species' 
 geographic distributions are by construction smaller than the whole ecosystem area, those distributed closer to the start of 
 the extinction front lose area first, while those distributed farthest from the extinction front only lose area when the 
 ecosystem is almost completely destroyed. Because genetic diversity loss is both due to complete extinction of species as well 
 as area reduction of extant species, the compound genetic diversity loss curve (red) follows the faster loss dynamics. (B) 
 Holding  z  SAR  =0.3 constant, and varying  z  MAR  in independent  simulations shows that the compound genetic diversity across 
 species is close to the sum of both z slopes (the SAR and the MAR), but it saturates at ca. 0.85 (grey dotted line shows  z  MAR  + 
 z  SAR  ). 
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 SUPPLEMENTAL TABLES 

 Table S1 | msprime population genetic simulations in 2D 
 Simulations summarised by grouping ranges of the resulting  z  MAR  parameters. The average parameters of the simulations 
 with similar  z  MAR  EW provided. (Acronyms: Nemt = product  of effective population size, migration rate, and simulated 
 generations). 

 z  MAR  Samples/deme  Generations  Migration rate  N  e  mt 
 0.2 +/- 0.05  2.4  50001.7  0.0271675  5000044.23 
 0.3 +/- 0.05  20.25  70003  0.0561655  7000075.77 
 0.4 +/- 0.05  26.5714286  13057.4286  0.04450857  1305497.96 
 0.5 +/- 0.05  12.9230769  121759.462  0.04017769  752221.743 
 0.6 +/- 0.05  15.6111111  3218.77778  0.045735  321174.768 
 0.7 +/- 0.05  35.6842105  35034.8421  0.03395895  143791.614 
 0.8 +/- 0.05  35.030303  15655.1212  0.03055818  58023.5539 
 0.9 +/- 0.05  36.5806452  3057.12903  0.0253029  15290.4081 
 1 +/- 0.05  42.0140845  13625.4085  0.00861178  1798.36141 
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 Table S2 | Linear model explaining z  MAR  by migration  rate and natural selection 
 Summary table of the linear model  z  MAR  ~  mig + s  + mig:s 

 Estimate  SE  t-value  P-value 
 intercept  0.3385022  0.0469174  7.214859  0.0000001 

 mig  -0.0419733  0.0085804  -4.891792  0.0000407 
 s  -4.693492  1.6290184  -2.881178  0.0076725 

 mig : s  -0.4998393  0.2426463  -2.059950  0.0491621 
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 Table S3 | AIC values for model fit of common species distribution curves. 
 For each SAD model, the degrees of freedom and the delta AIC compared to the top model are reported. 

 Model  dAIC  df 
 log-Normal  0  2 

 Poisson  7204.37509  2 
 Geometric  44267.5475  1 

 Weibull  45872.3678  2 
 Gamma  48805.6065  2 

 Broken Stick  49076.4368  0 
 UNTB (MTZSM)  168434.181  1 

 log-Series  168434.726  1 
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 Table S4 | Different SAR curves fit to mutations. 
 We fit 20 different functions and calculated the variance explained (R2), Pearson's r, and Spearman's rho. 

 Model  R2  r  rho 
 Asymptotic regression  0.21825683  0.46717965  0.53510077 
 Beta-P cumulative  0.22012799  0.46917799  0.53374757 
 Chapman Richards  0  NA  NA 
 Cumulative Weibull 3 par.  0.21929646  0.468291  0.53374757 
 Cumulative Weibull 4 par.  0.21930145  0.46829633  0.53374757 
 Extended Power model 1  0.21833611  0.46726449  0.53026812 
 Extended Power model 2  0.21682584  0.46564561  0.53462775 
 Gompertz  0.16393078  0.40488366  0.45964364 
 Heleg(Logistic)  0.21929721  0.4682918  0.53531975 
 Kobayashi  0.22228406  0.47147011  0.53526975 
 Linear model  0.19579007  0.44248171  0.53510077 
 Logarithmic  0.20280401  0.45033767  0.53430311 
 Logistic(Standard)  0.22536996  0.47473146  0.53549765 
 Monod  0.22500999  0.47435217  0.53579276 
 Negative exponential  0.22801633  0.47751055  0.53447179 
 Persistence function 1  0.21929612  0.46829063  0.53501182 
 Persistence function 2  0.21760028  0.46647645  0.53409266 
 Power  0.21929556  0.46829004  0.53543785 
 PowerR  0.21753225  0.46640353  0.53493321 
 Rational function  0.22072491  0.46981369  0.53451874 
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 Table S5 | The mutations-area relationship (MAR). 
 Fitted values in a log-log power function between area sampled and mutations discovered. 
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 Table S6 | The endemic-mutations-area relationship (EMAR). 
 Fitted values in a log-log power function between area sampled and endemic mutations discovered. 
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 Table S7 | MAR built with different area calculations and grid sizes 

 Grid resolution 
 (deg.) 

 z  MAR  [CI95%] 
 (cell area) 

 z  MAR  [CI95%] 
 (total area) 

 A=N  0.431 (0.423 - 0.439)  NA 
 0.1  0.435 (0.424 - 0.446)  0.367 (0.281 - 0.454) 
 0.25  0.454 (0.449 - 0.459)  0.422 (0.376 - 0.467) 
 0.5  0.488 (0.465 - 0.511)  0.352 (0.152 - 0.551) 
 1  0.543 (0.529 - 0.558)  0.389 (0.295 - 0.483) 
 2.5  0.644 (0.6 - 0.688)  0.388 (0.251 - 0.526) 
 5  0.617 (0.205 - 1.029)  0.403 (-0.204 - 1.011) 
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 Table S8 | Outward and inward MAR and EMAR 
 The MAR and EMAR relationship computed with inward or outward nested subsampling, calculating area only as those cells 
 with samples. 

 Relationship  z 
 MAR outwards  0.444 (0.412 - 0.476) 
 EMAR outwards  1.086 (0.982 - 1.189) 
 MAR inwards  0.561 (0.524 - 0.597) 
 EMAR inwards  1.295 (1.192 - 1.399) 
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 Table S9 | MAR for putatively neutral, deleterious, and locally adaptive alleles in Arabidopsis thaliana 

 SNP set  z 
 neutral  0.324 (0.238 - 0.41) 
 globally deleterious  0.209 (0.13 - 0.288) 
 locally adaptive  0.291 (0.217 - 0.365) 
 globally positive  0.234 (0.137 - 0.332) 
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 Table S10 | The mutations-area relationship across species. Extended Table 1 
 The Mutations-Area Relationship (MAR) fitted with Area = Individuals and the scaled version. In the main text areas to 
 protect 90% of genetic diversity per species are provided given the scaled z*. Here, we also provide the average estimated 
 area based on % of grid cells per species to be transformed from 2015 to 2050 using the LUH  2  dataset, the area  where at 
 least 10% of grid cells will be transformed, and the genetic loss corresponding to those area transformations (see section 
 V.2). 

 Species (study)  SFS 
 mod [  ΔAIC  ] 

 MAR (A=N) 
 z  N  [CI95%] 

 LUH  2 

 change 
 ‘50 

 LUH  2 

 >10% 
 change 
 ‘50 

 LUH  2 

 extinct 
 ‘50 

 LUH  2 

 >10% 
 extinct 
 ‘50 

 Arabidopsis thaliana  (19)  logN (85.8)  0.431 (0.423 - 0.439)  4.58  13.54  1.12  3.43 
 Arabidopsis lyrata  (69)  logN (9592.4)  0.254 (0.238 - 0.27)  0.79  2.64  0.19  0.64 
 Amaranthus tuberculatus  (70)  logN (7317.5)  0.244 (0.237 - 0.251)  4.86  11.13  1.19  2.79 
 Eucalyptus melliodora  (71)  logN (157.5)  0.531 (0.526 - 0.536)  3.82  7.77  0.93  1.92 
 Yucca brevifolia  (85)  logN(33300)  0.141 (0.128 - 0.155)  0.74  0  0.18  0 
 Mimulus guttatus  (72)  logN (580.8)  0.342 (0.331 - 0.353)  3.78  NA  0.92  NA 
 Panicum virgatum  (73)  logN (8345.2)  0.226 (0.215 - 0.237)  8.07  27.65  2  7.47 
 Panicum hallii  (84)  logN (86)  0.983 (0.907 - 1.059)  3.78  11.36  0.92  2.85 
 Pinus contorta  (74)  Wei (19413.7)  0.019 (0.018 - 0.02)  1.95  5.54  0.47  1.36 
 Pinus torreyana  (87)  logN(766156)  0.142 (0.142 - 0.142)  25.4  NA  6.79  NA 
 Populus trichocarpa  (75)  logS (0)  0.268 (0.257 - 0.28)  4.68  17.28  1.14  4.45 
 Anopheles gambiae  (76)  logS (0)  0.221 (0.209 - 0.233)  9.95  21.96  2.48  5.78 
 Acropora millepora  (77)  logN (452.3)  0.403 (0.395 - 0.41)  72.73  84.69  26.79  36.26 
 Drosophila melanogaster  (86)  logN(33300)  0.445 (0.433 - 0.458)  0.95  NA  0.23  NA 
 Empidonax traillii  (78)  Wei (640401.9)  0.169 (0.139 - 0.199)  5.55  15.14  1.36  3.86 
 Setophaga petechia  (79)  ln (67138.5)  0.251 (0.236 - 0.267)  2.83  7.54  0.69  1.86 
 Peromyscus maniculatus  (80)  logN (1449.7)  0.844 (0.769 - 0.919)  5.61  13.68  1.38  3.47 
 Dicerorhinus sumatrensis  (88)  Wei (107864.2)  0.474 (0.449 - 0.498)  0.25  NA  0.06  NA 
 Canis lupus  (82)  logN (85.8)  0.29 (0.28 - 0.301)  0.23  NA  0.06  NA 
 Homo sapiens  (83)  logN (9592.4)  0.395 (0.339 - 0.451)  28.81  40.13  7.83  11.58 
 Extended acronyms: 
 logN: log Normal distribution. logS: log Series distribution. Wei: Weibull distribution. 
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 Table S11 | Mean z  MAR  and other summary statistics  across species. 
 We selected those species that did not show artefacts. See section IV.1 for species removed and explanatory reasons. 

 z  MAR  z  MAR  (A=N)  z*  MAR  scaled 
 mean  0.31  0.39  0.27 
 mean se  0.038  0.053  0.048 
 median  0.25  0.29  0.18 
 IQR  0.15  0.19  0.17 
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 Table S12 | Traits, life history, and other characteristics of the analyzed species. 

 Species  RedList 
 Known 
 Decline  Kingdom  Reproduction  Pollination  Mobility  AreaRange 

 Arabidopsis thaliana  NO  NO  Plantae  Selfing  Selfing  Sessile  27337467.4 
 Arabidopsis lyrata  NO  NO  Plantae  Outcrossing  Vector  Sessile  2791301.4 
 Amaranthus tuberculatus  LC  NO  Plantae  Outcrossing  Vector  Sessile  804124.8 
 Eucalyptus melliodora  VU  NO  Plantae  Outcrossing  Wind  Sessile  948699.3 
 Yucca brevifolia  LC  YES  Plantae  Outcrossing  Vector  Sessile  1213454.4 
 Mimulus guttatus  LC  NO  Plantae  Outcrossing  Vector  Sessile  25138310.6 
 Panicum virgatum  LC  NO  Plantae  Outcrossing  Wind  Sessile  6291400.2 
 Panicum hallii  NO  NO  Plantae  Outcrossing  Wind  Sessile  2188807.4 
 Pinus contorta  LC  NO  Plantae  Outcrossing  Wind  Sessile  886182.2 
 Pinus torreyana  CR  YES  Plantae  Outcrossing  Wind  Sessile  30781.95 
 Populus trichocarpa  LC  NO  Plantae  Outcrossing  Wind  Sessile  1119664.1 
 Drosophila melanogaster  NO  NO  Animalia  Outcrossing  Activemating  Fly  115208408 
 Anopheles gambiae  NO  NO  Animalia  Outcrossing  Activemating  Fly  19959809.9 
 Acropora millepora  NT  YES  Animalia  Outcrossing  Activemating  Fly  26725.9 
 Empidonax traillii  LC  YES  Animalia  Outcrossing  Activemating  Fly  7027395.2 
 Setophaga petechia  LC  NO  Animalia  Outcrossing  Activemating  Fly  15172431.15 
 Peromyscus maniculatus  LC  NO  Animalia  Outcrossing  Activemating  Mobile  22609152.6 
 Dicerorhinus  sumatrensis  CR  YES  Animalia  Outcrossing  Activemating  Mobile  3335605.58 
 Canis lupus  LC  NO  Animalia  Outcrossing  Activemating  Mobile  19102403.5 
 Homo sapiens  NA  NA  NA  NA  NA  NA  80763121.8 
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 Table S13 | Association of traits, life history, and other characteristics with  z  MAR  . 
 Acronyms: NO=not assessed but likely non-threatened, LC=low concern, VU=vulnerable, CR=critically endangered 

 Df  Sum Sq  Mean Sq  F value  Pr(>F) 
 RedList  4  0.0952396  0.0238099  0.5580988  0.7040464 
 KnownDecline  1  0.0275537  0.0275537  0.6458527  0.4580865 
 Kingdom  1  0.0011684  0.0011684  0.0273876  0.8750400 
 Reproduction  1  0.0003238  0.0003238  0.0075890  0.9339612 
 Pollination  1  0.0375975  0.0375975  0.8812784  0.3909509 
 Mobility  1  0.1600627  0.1600627  3.7518370  0.1104995 
 AreaRange  1  0.0174745  0.0174745  0.4095989  0.5503439 
 Residuals  5  0.2133125  0.0426625  NA  NA 
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 Table S14 | Millennium Ecosystem Assessment land cover transformation. 
 Changes of ecosystem area pre-21  st  century. Ecosystem  names are repeated for ecosystem sub-classes. 
 Source:  https://www.millenniumassessment.org 

 System  Area (km  2  x10  6  )  Earth % surface  Protected areas (%)  Area transformed (%) 
 MARINE  349.3  68.6  0.3  NA 
 COASTAL  17.2  4.1  7  NA 
 - TERRESTRIAL  6  4.1  4  11 
 - MARINE  11.2  2.2  9  NA 
 INLAND WATER  10.3  7  12  11 
 FOREST/WOODLAND  41.9  28.4  10  42 
 - TROPICAL  23.3  15.8  11  34 
 - TEMPERATE  6.2  4.2  16  67 
 - BOREAL  12.4  8.4  4  25 
 DRYLAND  59.9  40.6  7  18 
 - HYPERARID  9.6  6.5  11  1 
 - ARID  15.3  10.4  6  5 
 - SEMIARID  22.3  15.3  6  25 
 - SUBHUMID  12.7  8.6  7  35 
 ISLAND  7.1  4.8  17  17 
 - STATES  4.7  3.2  18  21 
 MOUNTAINS  35.8  24.3  14  12 
 - 300-1000  13  8.8  11  13 
 - 1000-2500  11.3  7.7  14  13 
 - 2500-4500  9.6  6.5  18  6 
 - 4500+  1.8  1.2  22  0.3 
 POLAR  23  15.6  42  0.38 
 CULTIVATED  35.3  23.9  6  47 
 - PASTURE  0.1  0.1  4  11 
 - CROPLAND  8.3  5.7  4  62 
 - MIXED  26.9  18.2  6  43 
 URBAN  3.6  2.4  0  100 
 GLOBAL  510  NA  4  38 
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 Table S15 | IPBES land cover transformation, 
 Source:  https://ipbes.net 

 Region  Area(Mkm2)  MSA_2010  MSA_2050_SSP2  MSA_2050_SSP1  MSA_2050_SSP3 
 North America  20  65  56  NA  NA 
 Central and South America  18  65  53  NA  NA 
 Middle East and Northern Africa  11  81  77  NA  NA 
 Sub-Saharan Africa  24  70  56  NA  NA 
 Western and Central Europe  6  37  29  NA  NA 
 Russian region and Central Asia  21  73  65  NA  NA 
 South Asia  5  44  35  NA  NA 
 China region  11  56  49  NA  NA 
 Southeast Asia  7  55  43  NA  NA 
 Japan, Korea and Oceania  8  71  57  NA  NA 
 Polar  2  96  91  NA  NA 
 World  132  66  56  62  54 
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 Table S16 | Land Use Harmonization 2 from 1850 to 2015 
 Source: https://luh.umd.edu/data.shtml 

 Area % 
 Primary forest transformed  43 
 Primary non-forest transformed  50 
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 Table S17 | IUCN Red List categories of extinction risk and number of species. 
 Source:  www.iucnredlist.org  , July 2022. Number of  mammals, amphibians, birds, and plants evaluated by the IUCN. 

 Category 
 min. % area reduction 
 (A2-4criteria)  A1  A2-4  B1  B2  C1  C2  D  E 

 Decreasing 
 population 
 trend  Nspp 

 EX  ~100%  0  0  0  0  0  0  0  0  -  452 

 EX?  ~100%  0  51  385  472  5  40  236  0  -  782 

 CEN  80%  136  916  3096  2765  147  798  897  0  61.4%  5339 

 EN  50%  149  1621  6895  7193  173  577  411  0  63.1%  11475 

 VU  30%  492  2240  3976  4138  167  425  0  0  44.8%  11001 

 LR/NT  20-25%  28  1688  1201  1397  154  326  0  0  49.8%  5292 

 LC/DD  ?  0  0  0  0  0  0  0  0  15%  48460 
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 Table S18 | Estimates of average expected genetic loss for different ecosystems. 
 Assuming ecosystem transformation approximately translates into average species distribution reduction, and using the 
 ranges of z  MAR  from Table 1 of the main text, we  project the average genetic loss using the Mutations Area Relationship. 

 System  Area transformed 
 (%) 

 Genetic loss 
 % (mean z based) 

 Genetic loss 
 % (min z based) 

 Genetic loss 
 % (max z based) 

 COASTAL TERRESTRIAL  11  3.2  0.9  9 
 INLAND WATER  11  3.2  0.9  79.7 
 FOREST/WOODLAND  42  14.0  4  35.8 
 FOREST/WOODLAND 
 TROPICAL  34  10.5  3  28.7 
 FOREST/WOODLAND 
 TEMPERATE  67  26.5  7.9  59.4 
 FOREST/WOODLAND 
 BOREAL  25  7.7  2.1  20.9 
 DRYLAND  18  5.4  1.5  14.9 
 DRYLAND HYPERARID  1  0.3  0.1  0.8 
 DRYLAND ARID  5  1.4  0.4  4.1 
 DRYLAND SEMIARID  25  7.7  2.1  20.9 
 DRYLAND SUBHUMID  35  11.3  3.2  29.6 
 ISLAND  17  5.0  1.4  14.1 
 MOUNTAINS  12  3.5  0.9  9.9 
 MOUNTAINS 300-1000  13  3.8  1  10.7 
 MOUNTAINS 1000-2500  13  3.8  1  10.7 
 MOUNTAINS 2500-4500  6  1.7  0.5  4.9 
 MOUNTAINS 4500+  0.3  0.1  0  0.2 
 POLAR  0.4  0.1  0  0.3 
 GLOBAL  38  12.4  3.5  32.2 
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