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ARTICLE
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Summary
Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-

environment interactions influence complex traits in humans. Themagnitude of genetic interactions in complex traits has been difficult

to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to

test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of

European ancestry shared between European American and admixed African American individuals have the same causal effect sizes.

We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of

European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression

in 296 African Americans and 482 European Americans in theMulti-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein

cholesterol (LDL-C) in 74K African Americans and 296K European Americans in theMillion Veteran Program (MVP).We find significant

evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not

significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions

modify the effect sizes of causal variants in human complex traits.
Introduction

Over the last two decades, genome-wide association

studies (GWASs) have demonstrated that human complex

traits are influenced by many thousands of causal variants,

each with small additive effects. What remains unclear is

the extent to which traits are influenced by interactions be-

tween these variants, or between variants and the environ-

ment. Despite the dramatic increases in study size, GWASs

are underpowered to detect individual gene-by-gene inter-

actions of small effect. Testing for gene-by-environment

interactions is similarly difficult but with the added

complication that the ‘‘environment’’ is notoriously hard

to quantify. Thus, even though a handful of large-effect in-

teractions have been identified,1–9 the overall role of ge-

netic interactions in complex trait architecture is yet to

be determined.

Here, we test for genetic interactions by assessing

whether causal variant effect sizes differ between popula-

tions. We use population differences in causal effect sizes
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as a proxy for genetic interactions because self-reported de-

scriptors of population identity often loosely correlate

with both genetic variation and/or environmental fac-

tors.10 For example, in the United States, self-reported

race often correlates with environmental exposures, such

as access to healthcare, because of a historical legacy of

structural racism that extends into the present day.11

This drives substantial environmental differences between

populations, and if two populations have sufficiently

different environmental backgrounds, then the existence

of gene-by-environment interactions can produce modest

differences in causal variant effect sizes. The existence of

differential gene-by-gene interactions between popula-

tions would likewise produce differences in causal variant

effect sizes.

However, comparing causal variant effect sizes between

populations is rife with challenges. The causal variants un-

derlyinghumancomplex traits are generally unknown, and

instead, GWASs typically identify single-nucleotide poly-

morphisms (SNPs) that are statistically associated with the
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trait because of strong linkage disequilibrium (LD) with the

causal variant(s). As a result of differences in LD structure,

these trait-associated SNPs may not be equally correlated

with the same causal variant in two different populations,

resulting in different marginal effect sizes. This is especially

true if the causal variant is private, or onlypresent in a single

population. Thus, although several studies have observed

differences betweenpopulations in themarginal effect sizes

of trait-associated SNPs,12–15 this could correspond both to

differences in the effect sizes of causal variants themselves

and to differences in LD structure.

These questions have been addressed further with statis-

tical methods that leverage LD reference panels to account

for differences in LD structure between populations.16,17

These studies have found modest differences in causal

variant effect sizes for both gene expression and complex

traits. However, these existingmethods are limited by their

reliance on accurate LD reference panels and their diffi-

culty in accounting for rare or population-specific causal

variants. Furthermore, these methods are not suitable for

application to recently admixed populations, such as Afri-

can Americans and Latin Americans, because of the com-

plexities of long-range admixture LD.

In this paper, we compare the genetic architecture of

gene expression and low-density lipoprotein cholesterol

(LDL-C) between African Americans and European Ameri-

cans. Using data from the Multi-Ethnic Study of Athero-

sclerosis (MESA) and the Million Veteran Program (MVP),

we first compare themarginal effect sizes of trait-associated

SNPs when estimated from European Americans and from

African Americans. We next quantify the contribution of

local and global ancestry to phenotypic variance. Lastly,

we leverage the multiple ancestries in the genomes of ad-

mixed populations to test for the existence of genetic inter-

actions. Admixed African American genomes contain re-

gions of European ancestry that share the same local LD

structure as the genomes of European Americans. Within

these regions of shared ancestry, we can compare variant

effect sizes between populations without bias from differ-

ences in LD structure. Specifically, we hypothesize that in

the absence of gene-by-gene or gene-by-environment in-

teractions, SNPs will have the same marginal effect sizes

in European Americans and regions of European ancestry

in African Americans. Conversely, we hypothesize that

the presence of genetic interactions will drive the effect

sizes of SNPs in regions of European ancestry in African

Americans to be more similar to those of SNPs in regions

of African ancestry.
Material and methods

Ethics
This research has been conducted with the Multi-Ethnic Study of

Atherosclerosis (MESA) dataset, the Million Veteran Program

(MVP) dataset, and the UK Biobank dataset. The MESA dataset

was obtained under TOPMed application number 10194, ‘‘Investi-

gating cross-population portability of variant effect sizes.’’ All
2 The American Journal of Human Genetics 109, 1–12, July 7, 2022
MESA participants provided written informed consent. The MVP

dataset was obtained under MVP application number 200229,

‘‘Genetics of Cardiometabolic Diseases in the VA population.’’

All MVP participants provided written informed consent, and

the study protocol was approved by the Veterans Affairs Central

Institutional Review Board. The UK Biobank dataset was obtained

under application number 24983, ‘‘Generating effective therapeu-

tic hypotheses from genomic and hospital linkage data.’’ All par-

ticipants of UK Biobank provided written informed consent.
Genotype and phenotype datasets
Multi-Ethnic Study of Atherosclerosis (MESA)

For MESA, we obtained phased whole-genome-sequencing data

and gene expression data in peripheral blood mononuclear cells

(PBMCs) from TOPMed Freeze 8. After filtering individuals on the

basis of ancestry, as we describe below, theMESAdataset comprised

296 individualswho self-reported race as Black or AfricanAmerican

and 482 individuals who self-reported race as White. We hence-

forth use the term ‘‘African American’’ to refer to all individuals

who self-report race as Black or African American. Analogously,

we use the term ‘‘European American’’ to refer to all individuals

who self-report race as White and cluster with individuals of Euro-

pean ancestry in principal-component analysis of genotypes.

380 of these individuals had gene expression data available at

two exams, spaced 5 years apart. For these individuals, we selected

the time of exam to use such that the proportions of certain cova-

riates (sex, time of exam, sequencing center) were approximately

balanced between European Americans and African Americans.

Briefly, this was done by iterating through this set of individuals

ten times and changing the time of exam used for that individual

if doing so would increase the similarity of covariate proportions

between the two populations.

As done previously by the GTEx Consortium,18 gene-level

expression quantification was based on the GENCODE 26 annota-

tion, collapsed to a single transcript model for each gene with a

custom isoform collapsing procedure. Gene-level read counts

were obtained with RNA-SeQC v1.1.9.19 We selected genes with

expression thresholds of >0.1 transcripts per million (TPM) in at

least 20% of samples and R6 reads in at least 20% of samples,

thresholding separately for European Americans and African

Americans in both cases. A total of 10,870 genes passed this

filtering step. We log-transformed gene expression measurements

and used these transformed phenotypes in all downstream ana-

lyses. We selected bi-allelic SNPs with an MAF > 0.05 and minor

allele sample count > 5 in both European Americans and African

Americans.

Million Veteran Program (MVP)

For MVP, we used GRCh37 genotype calls processed and subject to

quality control as described in Hunter-Zinck et al.20 Data were

imputed with IMPUTE via the 1000 Genomes Phase 3 reference

panel.21,22 As previously done for MVP,20 the population of each

individual (i.e., African American or European American) was

determined by HARE.23 Using KING coefficients,24 we removed

relatives who were closer than 3rd degree cousins, which left

73,788 African American and 296,124 European American indi-

viduals. For all analyses, we used the maximum LDL-C measure-

ment for each individual across all time points. In addition, we

numerically adjusted LDL-C measurements for statin usage by

multiplying measurements by 0.7 if an individual was inferred

to be on statin medication. We inferred that individuals were on

statin medication if a statin prescription was filled within the
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length of the prescription plus a buffer of 15 days within the

LDL-C measurement date.

Inferring global and local ancestry
We inferred global ancestry for admixed African American individ-

uals with supervised ADMIXTURE, using default program

parameters.25 We used 99 CEU individuals and 108 YRI individ-

uals from 1000 Genomes Phase 3 as our reference populations.

We filtered for bi-allelic SNPs with MAF > 0.05 in both the ad-

mixed population and the reference populations and again filtered

for MAF > 0.1 after merging the admixed and reference datasets.

We pruned SNPs with an r2 value > 0.1.

We inferred local ancestry with RFMix v1.5.4, using default pro-

gram parameters and no expectation-maximization iterations.26

We assumed eight generations since the time of admixture be-

tween an African population and a European population.27 We

again used 99 CEU individuals and 108 YRI individuals from

1000 Genomes Phase 3 as our reference populations. We used bi-

allelic SNPs with MAF > 0.05 in both the admixed population

and the reference populations and removed SNPs with an r2 value

> 0.5.

In both datasets, we excluded African Americans with < 0.5

global African ancestry from downstream analyses. We also

excluded one European American individual from MESA who

did not cluster with individuals of European ancestry in prin-

cipal-component analysis of genotypes.

Comparing marginal SNP effect sizes between

populations
Gene expression (MESA)

To identify SNPs affecting expression in cis, we filtered for SNPs

within 100 kb of the transcription start site (TSS) for each gene.

We ascertained trait-associated SNPs in a randomly sampled subset

of 232 European Americans by using ordinary least squares. This

regression included ten covariates that were significantly corre-

lated with expression phenotypes: sequencing center; time of

exam; sex; genotype PC 2, which captures structure within Euro-

pean Americans; and six covariates corresponding to a one-hot en-

coding of recruitment site (Figures S2 and S3A).

For each gene, we focused on the most significant SNP and ascer-

tained significant SNP-gene associations by applying a false discov-

ery rate of 0.01 to correct for multiple testing, as done by the GTEx

Consortium.18 All downstream analyses were performed on these

significant associations. Furthermore, all downstream analyses

excluded the individuals whowere used to ascertain trait-associated

SNPs.

For each significant SNP-gene association, we performed two

separate regressions to estimate bAA, the effect size in African

Americans, and bEA, the effect size in European Americans. For

each regression, we again included covariates significantly corre-

lated with expression phenotypes. To estimate bEA, we used

sequencing center, time of exam, sex, genotype PC 2, and recruit-

ment site as above. To estimate bAA, we used sequencing center,

time of exam, sex, recruitment site, and global African ancestry

fraction. (We did not include genotype PC 1 as a covariate despite

its significant association with expression because this is highly

correlated with global African ancestry fraction [Figure S3B].) We

estimated bEA in 250 European Americans and randomly sampled

an equal number of African Americans to estimate bAA.

LDL-C (MVP)

We ascertained genome-wide significant SNPs in 318,953 UK Bio-

bank White British individuals. After applying genomic filters
T

(MAF R 0.01, missing genotype rate % 0.05, Hardy-Weinberg

equilibrium with a cutoff of p < 13 10�6), we tested for associ-

ation with inverse-variance quantile normalized phenotypes by

using a linear model (–glm) in plink with the covariates age,

sex, assessment center, and statin usage. Significant variants�
p < 5310�8

�
were clumped and thinned to leave at most one

independent SNP per 0.1 cM.28

To estimate effect sizes of these variants in MVP, we extracted

variants from the imputed genotype set by using 1000 Genomes

Phase 3 as our reference panel. We filtered for MAFR 0.003 in Eu-

ropean Americans and African Americans, leaving 122 indepen-

dent SNPs. Our covariates included age, sex, global ancestry, and

genotype PC 1, which stratifies European Americans and is the

only principal component associated with LDL-C after residualiz-

ing on the other covariates. Principal components were calculated

on all individuals in the MVP dataset with HARE.20

To estimate effect sizes from the 74K African Americans ðbAAÞ,
we used linear regression in plink (–glm) and included the covari-

ates above.We likewise randomly sampled an equal number of Eu-

ropean Americans and estimated effect sizes ðbEAÞ.
Comparison of effect sizes

We used total least squares (TLS) regression to assess the slope of

the relationship between bbAA and bbEA. Estimates of SNP effect sizes

are statistically noisy, and unlike ordinary least squares, total least

squares is robust to uncertainty in the x axis variable. Because we

used the same number of samples to estimate bAA and bEA, their

standard errors will be comparable, as is necessary for TLS regres-

sion. We created 1,000 bootstrap replicates for each trait by sam-

pling with replacement over SNPs and report the 95% confidence

interval (CI) of the slope as defined by the 0.025 and 0.975

quantiles.
Quantifying role of ancestry in phenotypic variance
We constructed a series of phenotypic models and compared the

proportion of phenotypic variance explained by each model. We

fit each model in a training set comprising 80% of the data (for

gene expression, 237 African Americans and 200 European Amer-

icans; for LDL-C, 52K African Americans and 52K European Amer-

icans). We computed the proportion of variance explained as

1 � Varðy�byÞ
VarðyÞ in a test set comprising the remaining 20% of the

data (for gene expression, 59 African Americans and 50 European

Americans; for LDL-C, 22K African Americans and 22K European

Americans). This quantity can be interpreted as measuring the

decrease in residual variance relative to phenotypic variance. For

gene expression, we report the average variance explained across

all significant genes.

We note that this procedure differs from our previous analysis in

twoways. First, we fit themodels below by performing a regression

on the joint sample of African Americans and European Ameri-

cans, whereas previously, we performed a regression in each pop-

ulation separately. Second, although we previously downsampled

the number of African Americans in MESA, here we included all

296 African Americans to maximize our power to estimate local

ancestry-specific effect sizes. (In addition, because African Amer-

ican genomes contain both African and European ancestry, it is

not as useful to downsample the number of African Americans

for these analyses.)

We first modeled the phenotype y in an individual i with only

technical covariates (c). For gene expression, this consisted of sex

and batch (sequencing center, time of exam, and recruitment

site); for LDL-C, this consisted of age and sex.
he American Journal of Human Genetics 109, 1–12, July 7, 2022 3
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yi ¼ cibc (Equation 1)

Consecutive models added an indicator variable for race (r), fol-

lowed by genome-wide descriptors of ancestry (q). Specifically, q

includes global African ancestry fraction and genotype principal

components that stratify European Americans (PC 2 for gene

expression, see Figure S3; and PC 1 for LDL-C20).

yi ¼ cibc þ ribr (Equation 2)

yi ¼ cibc þ ribr þ qibq (Equation 3)

We next included a local ancestry covariate (g) that measures the

number of haplotypes with African ancestry at the trait-associated

SNP. For gene expression, we averaged across all SNP-gene associ-

ations to report the variance explained by local ancestry. On the

other hand, for LDL-C, we summed across all trait-associated

SNPs to report the variance explained.

yi ¼ cibc þ ribr þ qibq þ gibg (Equation 4)

Lastly, we included the genotype at trait-associated SNPs. We

modeled the genotype with ancestry-specific effect sizes, given

that differences in LD structure produce differences in the mar-

ginal effect sizes of trait-associated SNPs. Rather than adding a sin-

gle term for trait-associated SNPs (e.g., gibg ), we added two terms,

gi;AbA and gi;EbE. We define gi;A as the number of alternate alleles

with African local ancestry and gi;E as the number of alternate al-

leles with European local ancestry. gi;A and gi;E therefore sum to

gi, the total genotype, and bA is the effect size in African local

ancestry, while bE is the effect size in European local ancestry.

Once again, to report the variance explained, we averaged across

all SNP-gene associations for gene expression and summed across

all trait-associated SNPs for LDL-C.

yi ¼ cibc þ ribr þ qibq þ gibg þ gi;AbA þ gi;EbE (Equation 5)

Testing for genetic interactions
Overview of model

We constructed a phenotypic model in which we introduce the

parameter d to measure differences in the marginal effect size of

trait-associated SNPs in regions of European ancestry in African

Americans compared to European Americans.

We extend Equation 5,modeling the phenotype y for a single in-

dividual i as follows:

yi ¼ cibc þ ribr þ qibq þ gibg þ gi;AbA þ gi;EbE þ drigi;EðbA � bEÞ:
(Equation 6)

As described above, the first four terms (ci, ri, qi, gi) are technical

covariates, race, global ancestry and principal components, and

local ancestry, respectively. The next two terms (gi;AbA, gi;EbE)

model ancestry-specific effect sizes of trait-associated SNPs.

In the final term, we introduce the parameter d, whichmeasures

the extent to which marginal effect sizes of SNPs in regions of Eu-

ropean ancestry in African Americans differ from those in Euro-

pean Americans. Using the parameter d, we can indirectly test

whether causal variant effect sizes differ between African Ameri-

cans and European Americans. When d equals 0, the marginal ef-

fect size of a SNP in a region of European ancestry in an African

American is equal to bE; as d approaches 1, the marginal effect

size approaches bA. Thus, under the null hypothesis that causal

variant effect sizes are identical between populations, d will be
4 The American Journal of Human Genetics 109, 1–12, July 7, 2022
equal to 0. However, if causal variant effect sizes differ between

populations because they are modified by the genome and/or

environment, d will be greater than 0. (We note that a value of

d equal to 0 is not evidence for the absence of any genetic interac-

tions; rather, it indicates that genetic interactions do not differ

enough between populations to produce differences in causal

variant effect sizes.)

Fitting the model

To fit this model, we began by initializing bd to a random value on

the interval ½0;1�, which is the most biologically intuitive range of

values for d (see Figure 3A). We next optimized bb ¼ ðbbc; bbr ; bbq,

bbg; bbA; bbEÞ conditional on this value of bd, and we then optimized

bd conditional on bb. For both gene expression and LDL-C, we per-

formed this regression marginally on each SNP. In other words,

conditional on bd, we estimated bb for each SNP independently of

the rest.We continued this iterative optimizingwith ordinary least

squares regression until bd converged (i.e., did not change by

>.0001). Though bd was initialized on the interval ½0;1�, the opti-

mization procedure itself was unconstrained. Additionally, we

found that regardless of the initial value of bd, our optimization

procedure converged to the same value. The optimizationmethod

converged quickly for both datasets (22 iterations for gene expres-

sion, 18 for LDL-C). For the gene expression data, we estimated

one value of d from all SNP-gene associations to avoid overparame-

terization. For the LDL-C data, we estimated one value of d across

all trait-associated SNPs. To construct a 95%CI for bd, we bootstrap-

ped over SNPs and reported the 0.025 and 0.975 quantiles. (For

gene expression, this procedure is equivalent to bootstrapping

over genes because each gene is modeled by exactly one SNP.)

We concluded that there is significant evidence for genetic interac-

tions if the values in the 95% CI are strictly greater than zero. To

generate a likelihood surface for d, we computed the log-likelihood

of the data conditional on values of d ranging from 0 to 1, with a

step size of 0.01.

Assessing properties of the estimator bd
We first assessed the bias of our estimator bd with simulations de-

signedtoemulateouranalysesof geneexpression inMESA.Wesimu-

lated genotypes and phenotypes for 100 independent loci in 320 ad-

mixed African Americans and 500 Europeans. For each African

American, we simulated global African ancestry fraction from a

beta distribution ða ¼ 7:9;b ¼ 2:1Þ resembling the empirical distri-

bution of global ancestry. For each locus,we simulated local ancestry

conditional on global ancestry from a binomial distribution.

We then simulated the respective numbers of African and Euro-

pean genomes by using the two-population out-of-Africa model as

implemented in stdpopsim.29–32 For each locus, we simulated 1%

of chromosome 22 and filtered for SNPs that had MAF > 0:05 in

both African and European genomes. To mimic ascertainment in a

European population, we held out genomes for 250 European indi-

viduals; to mimic ascertainment in an African population, we held

out genomes for two-thirds of all individuals who had two copies

of African ancestry (i.e., g ¼ 2). We simulated causal and tag SNPs

by jointly sampling at random from the set of all pairs of SNPs

with r2 greater than a specified threshold in the ascertainment indi-

viduals.We conducted simulationswith r2 thresholds of 0.6 and0.8.

We simulated causal variant effect sizes from a bivariate normal

distribution with a correlation of 0.85, which allowed causal variant

effect sizes in African and European ancestries to differ (e.g., due to

gene-by-gene or gene-by-environment interactions). We simulated

phenotypes from causal SNP genotypes by using the generative

model we specified in Equation 6, ignoring the role of technical,
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race, and ancestry covariates. For simulations inwhichcausal variant

effect sizes differ between populations, we simulated five values of

d rangingbetween0and0.8.Weestimateddbyapplyingour iterative

optimization procedure to the simulated phenotypes and tag SNP

genotypes for all 100 loci. For each combination of hyperparameters

(ascertainment population, r2 threshold, and simulated value of d),

we performed ten simulations.

Lastly, we assessed the behavior of our estimator bd in the case

where causal variant effect sizes are identical between populations.

In principle, if the true marginal effect sizes bA and bE are identical,

then the parameter d is not identifiable. In practice,we donot expect

the marginal effect sizes bA and bE to be identical because of differ-

ences in LD structure between African and European ancestries.

Nevertheless, we investigated this further in both simulations and

empirical data.

In simulations, we used a similar framework to that described

above, but we used a univariate normal distribution to simulate

causal variant effect sizes that were identical between popula-

tions. We performed 700 simulations to obtain a null distribution

for bd. For each simulation, we generated a 95% bootstrap CI for bd
and rejected the null hypothesis in favor of the alternative hy-

pothesis if the values in the CI were strictly greater than zero.

We estimated the type I error rate of our model by computing

the proportion of simulations in which the null hypothesis is

rejected.

In empirical data, we modified the model specified in Equation

6 such that we could use d to compare effect sizes between two

randomly sampled, independent subsets of European Americans.

On average, individuals in these two subsets have the same race,

global ancestry, local ancestry, and environment. Thus, we expect

that causal variant effect sizes are identical between subsets even

in the presence of gene-by-gene or gene-by-environment interac-

tions. To modify our model, we first excluded any African Amer-

icans with European ancestry at trait-associated SNPs. This

ensured that bE was estimated only from European Americans

at trait-associated SNPs and that bA was estimated only from Af-

rican Americans with African ancestry on both haplotypes at

trait-associated SNPs. Next, we assigned a randomly sampled sub-

set of the European Americans as a validation set. For gene

expression, this was 100 individuals, and for LDL-C, this was

74K individuals. We then replaced the race indicator in the last

term of the model with a validation set indicator. With this

particular modification of the model, our estimator bd tests

whether trait-associated SNPs have the same effect size in two

randomly sampled, independent subsets of European Americans.

If d is estimated to be non-zero between these two subsets of Eu-

ropean Americans, this would indicate that our estimator has

pathological behavior in the case where causal effect sizes are

identical between populations.

Results

We performed analyses for gene expression and LDL-C,

both of which are driven by a combination of genetic

factors and environmental factors. We analyzed gene

expression by using MESA, a dataset with whole-genome

sequencing and bulk RNA sequencing (RNA-seq) in pe-

ripheral blood mononuclear cells for 296 African Ameri-

cans and 482 European Americans. We analyzed LDL-C

by using MVP, a dataset with dense SNP genotyping

and LDL-C measurements for 74K African Americans
T

and 296K European Americans. Of existing human ge-

netic datasets, MESA and MVP have some of the largest

cohorts of admixed individuals for their respective

phenotypes.

Inferring global and local ancestry

We inferred global and local ancestry for the African Amer-

ican individuals in MESA and MVP. In both cases, we

modeled African Americans as a two-way admixture be-

tween African and European populations that occurred

eight generations ago.27 We estimated global ancestry by

using supervised ADMIXTURE with 1000 Genomes popu-

lations (CEU as European and YRI as African) as our refer-

ence populations.21,25 The average global African ancestry

of African American individuals is 0.80 in MESA and 0.82

in MVP, concordant with previous estimates from similar

populations33 (Figure 1A). We performed local ancestry

inference by using RFMix with the same 1000 Genomes

reference populations.26 Global ancestry fractions from

ADMIXTURE are highly correlated with those implied by

RFMix (MESA r ¼ 0:997, MVP r ¼ 0.98) (Figure S1). As

expected based on their admixture history, the local

ancestry of African American individuals alternates be-

tween blocks of African and European ancestry along the

genome and contains relatively large European blocks

(mean length is 15 Mb in MESA, 14 Mb in MVP)

(Figure 1B).

Comparing marginal SNP effect sizes between

populations

We first sought to compare marginal effect sizes of trait-

associated SNPs when estimated from European Americans

and from African Americans (Figure 1C). We expect that

marginal effect sizes of trait-associated SNPs will differ be-

tween the two populations because of known differences

in LD structure between African and European ancestries

as well as potential differences in gene-by-gene or gene-

by-environment interactions between populations. How-

ever, the magnitude of this difference in marginal effect

sizes is unclear. The observed magnitude of differences

may be inflated by sampling error, particularly if one pop-

ulation has a small sample size. Additionally, effect sizes

are usually largest in a discovery sample because of win-

ner’s curse, which further exacerbates differences between

discovery and replication datasets. To minimize these

biases, we ascertained trait-associated SNPs in a held-out

set of individuals and compared effect sizes in an equal

number of African Americans and European Americans

(Figure 1C).

We first log-transformed phenotype measurements for

variance stabilization. We did not perform quantile

normalization given that phenotypic variance might differ

between populations.34 We ascertained unlinked, trait-

associated SNPs in individuals of European ancestry. For

gene expression, we restricted our analyses to putative

cis-acting variants (i.e., within 100 kb of TSS) because cis-

acting variants have stronger effects than trans-acting
he American Journal of Human Genetics 109, 1–12, July 7, 2022 5
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Figure 1. Schematic of the analysis pipeline
(A) Global ancestry of African Americans is predominantly African, with an average global African ancestry fraction of 0.80 inMESA and
0.82 in MVP.
(B) Local ancestry for one African American individual in MESA. In general, individuals have either 0, 1, or 2 haplotypes with European
ancestry at each position.
(C) We compare marginal effect sizes of SNPs between African Americans and European Americans.
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variants and are more easily detected in modest sample

sizes.18,35 In the event that there were multiple SNPs asso-

ciated with a gene, we chose the most significant SNP for

downstream analyses.18 We ascertained trait-associated

SNPs (false discovery rate < 0.01) in a held-out subset of

232 European Americans in MESA, which resulted in

4,236 SNP-gene associations. For LDL-C, we ascertained

trait-associated SNPs
�
p < 5310�8

�
in 318,953 UK Bio-

bank (UKBB) White British individuals and clumped and

thinned them, which resulted in 122 trait-associated

SNPs. We performed all subsequent analyses on these

trait-associated SNPs.

To compare marginal effect sizes between populations,

we estimated the effect sizes of trait-associated SNPs sepa-

rately in African Americans ðbAAÞ and European Americans

ðbEAÞ. For gene expression, bAA and bEA were each estimated

from 250 individuals. For LDL-C, bAA and bEA were each

estimated from 74K individuals. For each trait, we

compared marginal effect sizes between the two popula-

tions by regressing effect sizes estimated from African

Americans ðbbAAÞ on effect sizes estimated from European

Americans ðbbEAÞ (Figure 2). We used total least squares

(TLS) to perform the regression because it is robust to statis-

tical noise in the independent variable ðbbEAÞ, while ordi-

nary least squares is not.
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For gene expression, effect sizes estimated from African

Americans are significantly smaller in magnitude than

the corresponding effect sizes estimated from European

Americans, with a slope of 0.85 (95% CI of 0.81–0.89)

(Figure 2). For LDL-C, we similarly observe a slope of

0.84, but this is not significantly different from 1 (95%

CI of 0.65–1.01), most likely due to the modest number

of SNPs analyzed for this trait. Our observation that mar-

ginal effect sizes estimated from African Americans are

smaller in magnitude can be at least partially explained

by our ascertainment of trait-associated SNPs in individ-

uals of European ancestry. Blocks of LD structure are

smaller in populations of African ancestry than in popula-

tions of European ancestry, and the African Americans in

MESA and MVP have a mean African global ancestry of

approximately 80%. Thus, the correlation between causal

variants and trait-associated SNPs ascertained in European

populations will generally be weaker in African Americans

than in European Americans, meaning that marginal effect

sizes estimated from African Americans will have a smaller

magnitude. Potential differences in gene-by-gene and

gene-by-environment interactions between populations

could also contribute to the observed differences in mar-

ginal effect sizes but are unlikely to produce such a system-

atic shift in the magnitudes of effect sizes.



A B

Figure 2. Comparing marginal SNP effect sizes between populations
(A and B) We estimated effect sizes of trait-associated SNPs and regressed the effect size estimated from African Americans on the effect
size estimated from European Americans. We represent the 95% bootstrap CI with the shaded region. Effect sizes estimated from African
Americans are (A) significantly smaller in magnitude than the corresponding effect sizes estimated from European Americans for gene
expression and (B) smaller but not significantly so for LDL-C.

Please cite this article in press as: Patel et al., Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and
complex traits, The American Journal of Human Genetics (2022), https://doi.org/10.1016/j.ajhg.2022.05.014
Quantifying role of ancestry in phenotypic variance

Given that African Americans are admixed with both Afri-

can and European ancestries, we next sought to assess the

contribution of global and local ancestry to phenotypic

variation. We quantified the contribution of both terms

to phenotypic variation by constructing a series of pheno-

typic models and computing the amount of variance ex-

plained by each model. We fit each model to roughly

80% of our data allocated as a training set and computed

the proportion of phenotypic variance explained by the

model in a test set with the remaining 20% of our data.

For gene expression, we report the average phenotypic

variance explained across all genes.

We constructed five phenotypic models in total, where

each model has an increasing number of terms relative to

its predecessor. Our first phenotypic model (Table 1; Equa-

tion 1) included only technical covariates (sex and batch

for gene expression; sex and age for LDL-C) and explains

18:41% of phenotypic variance for gene expression and

0:11% of phenotypic variance for LDL-C. For gene expres-

sion, most of the variance explained by these covariates is

due to batch effects, as is common for RNA-seq assays. We

next added an indicator variable for race, which allows for

race-specific phenotypic intercepts and can capture trait-

relevant differences in environment between African Amer-

ican and European American populations36 (Table 1; Equa-

tion 2). Compared to a model that only includes technical

covariates, including race explains an additional 1:26% of

variance ingeneexpressionand0:05%ofvariance inLDL-C.

We next added global African ancestry fraction and ge-

notype principal components to the model (Table 1; Equa-

tion 3). These covariates can capture additional population

structure: global African ancestry fraction stratifies African
T

Americans, while the principal components we include

stratify European Americans. In the context of gene

expression, global ancestry and genotype principal compo-

nents are known to be relevant for trait variation, poten-

tially because they capture the effect of trans genetic varia-

tion on expression.1,2,36 However, we find that these terms

have a small contribution to the overall phenotypic vari-

ance of both gene expression and LDL-C.

We next considered the importance of a local ancestry

covariate that measures the number of haplotypes with Af-

rican ancestry at each trait-associated SNP (Table 1; Equa-

tion 4). Local ancestry could implicitly capture the effect

of local genetic variation from SNPs that are not explicitly

modeled; in the context of gene expression, these unmod-

eled, trait-associated SNPs are likely cis-acting variants.

However, we find that including local ancestry does not

explain much additional variance in either gene expres-

sion or LDL-C.

Lastly, we considered the role of trait-associated SNPs

(Table1; Equation5).Differences inLDstructurebetweenAf-

rican and European ancestries result in differentmarginal ef-

fect sizes at trait-associatedSNPs, aswesee inFigure2.Conse-

quently, we modeled the genotype at trait-associated SNPs

with ancestry-specific effect sizes. We find that trait-associ-

ated SNPs contribute considerably to trait variation, explain-

ing an additional 3:62% of variance in gene expression and

2:12%of variance inLDL-C. Thus,we find that the genotype

at trait-associated SNPs contributes substantially more to

phenotypic variance than either local or global ancestry.

Testing for genetic interactions

Finally, we looked for evidence of genetic interactions by

testing whether causal variant effect sizes differ between
he American Journal of Human Genetics 109, 1–12, July 7, 2022 7



Table 1. Quantifying the role of ancestry in phenotypic variance

Term added Model

Additional variance explained (%)

Gene expression LDL-C

(1) Technical covariates yi ¼ cibc 18.41 0.11

(2) Race yi ¼ cibc þ ribr 1.26 0.05

(3) Global ancestry and PCs yi ¼ cibc þ ribr þ qibq 0.00 0.01

(4) Local ancestry yi ¼ cibc þ ribr þ qibq þ gibg 0.03 � 0.04

(5) Genotype with ancestry-specific effect sizes yi ¼ cibc þ ribr þ qibq þ gibg þ gi;AbA þ gi;EbE 3.62 2.12

We constructed a series of linear models and computed the percentage of phenotypic variance explained. For both traits, we report the increase in the percentage
of phenotypic variance explained by each model; for gene expression, we report the average increase across all genes. The variables in the models are defined as
follows: ci is a vector of technical covariates; ri is a race indicator variable; qi is a vector of global African ancestry fraction and principal components; gi is a local
ancestry covariate that measures the number of haplotypes with African ancestry at trait-associated SNPs; gi;A is the number of alternate alleles with African local
ancestry and gi;E is the number of alternate alleles with European local ancestry.
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populations. This is difficult to dowith standard approaches

because of the way in which LD structure can bias compari-

sonsofmarginal effect sizes.We thereforedeveloped amodel

that leverages the multiple ancestries within admixed ge-

nomes to indirectly test whether causal variant effect sizes

differbetweenpopulations.Specifically,wetestwhetherage-

netic variant in a region of European ancestry has the same

marginal effect size in African Americans and European

Americans.Weassume that the regionsof Europeanancestry

in theAfricanAmericans andEuropeanAmericans inour da-

tasets are virtually identical with respect to LD structure,

whichmeans that differences inmarginal effect sizes should

reflect differences in causal effect sizes.

This assumption is based on the specific demographic his-

tory of African Americans and Europeans. Given the rela-

tively short time since admixture in African Americans

(approximately eight generations), we expect that regions

of European ancestry in modern-day African Americans

feature the same LD structure as the European source popu-

lation contributing to the admixture event.27 Moreover,

others have previously demonstrated that there is low Fst

and high correlation of allele frequencies between various

European populations.37–39 Empirically, we also find that

nearly all (95%) SNPs that are tightly linked ðr2 > 0:8Þ in Eu-

ropean Americans inMESA are also tightly linked in regions

of European ancestry in African Americans in MESA. (In

contrast, only 65% of SNPs that are tightly linked in Euro-

pean Americans are tightly linked in regions of African

ancestry inAfricanAmericans.) Thus,wehaveextensive sup-

port for the assumption that the LD structure between trait-

associated SNPs and causal variants is similar in European

Americans and regions of European ancestry in African

Americans.

Then, under the null hypothesis that genetic interac-

tions do not impact causal variant effect sizes, causal var-

iants will have an identical effect size in all populations,

and trait-associated SNPs in regions of European ancestry

will have the same marginal effect size in African Ameri-

cans and European Americans. However, if genetic inter-

actions drive differences in causal variant effect sizes be-

tween populations, trait-associated SNPs in regions of
8 The American Journal of Human Genetics 109, 1–12, July 7, 2022
European ancestry will have different marginal effect sizes

in African Americans and European Americans. Specif-

ically, we hypothesize that in African Americans, the pres-

ence of genetic interactions will drive the marginal effect

sizes of SNPs in regions of European ancestry to be more

similar to those of SNPs in regions of African ancestry.

As we noted previously, without accounting for LD struc-

ture, we would expect marginal effect sizes of trait-associ-

ated SNPs to differ between populations regardless of

whether causal variant effect sizes do (i.e., regardless of

whether genetic interactions exist). However, because we

focus on regions of shared European ancestry in two

different populations, our comparison of marginal effect

sizes is not biased by differences in LD structure nor by

the possibility of private causal variants in European

populations.

We test this hypothesis by developing a model that uses

the parameter d to measure the extent to which marginal

effect sizes of SNPs in regions of European ancestry in Afri-

can Americans deviate from those in European Americans

(see material and methods, Equation 6). Values of d greater

than 0 indicate that SNPs in regions of European ancestry

in African Americans and European Americans have

different marginal effect sizes. In addition, values of

d greater than 0 indicate that SNPs in regions of European

ancestry in African Americans have effect sizes more

similar to SNPs in regions of African ancestry in African

Americans. Thus, values of d greater than 0 provide evi-

dence for genetic interactions driving differences in causal

variant effect sizes between populations.

For both traits, we fit this model to the trait-associated

SNPs we previously ascertained. We expect that estimates

of d will be noisy at individual SNPs, so for each trait, we

estimated a single shared value of d across all SNPs. This re-

sults in one value of d for gene expression, estimated from

all SNP-gene associations, and one value for LDL-C, esti-

mated from all trait-associated SNPs. Because this model

is non-linear, we iteratively optimized d and all other coef-

ficients, b ¼ ðbc; br ; bq; bg; bA; bEÞ, with ordinary least

squares until convergence. To construct a confidence inter-

val for bd, we bootstrapped over SNPs.
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Figure 3. Testing for genetic interactions
(A) We looked for evidence of genetic interactions by testing for differences in causal variant effect sizes between African Americans and
European Americans. The parameter dmeasures the extent to which the marginal effect sizes of SNPs in regions of European ancestry in
African Americans differ from those in European Americans.
(B and C) Likelihood surface for d. Maximum likelihood estimates and 95% bootstrap CI are 0.47 (0.39, 0.53) for gene expression and
0.46 (�0.06, 0.87) for LDL-C. We denote the MLE and 95% bootstrap CI with the vertical line and shaded region, respectively.
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We first assessed the bias of our estimator bd. Using a

standard demographic model, we simulated genotypes

for admixed African Americans and Europeans. In order

to simulate the LD structure present in our analyses of

real data, we simulated phenotypes from causal SNP geno-

types but estimated d from tag SNP genotypes in simula-

tions. We find that our estimates bd are well-correlated

with the simulated values of d regardless of ascertainment

population (Figure S5). We next assessed the performance

of our estimator in the case where causal effect sizes are

identical between populations. We find that even when

causal effect sizes are simulated to be identical between

populations, the marginal effect sizes at trait-associated

SNPs differ enough that our model remains identifiable

and we estimate values of d close to 0, with a well-cali-

brated type I error rate of 2.29% (Figure S6). We addition-

ally investigate this in empirical data by estimating d from

two subsets of European Americans between which we

expect causal effect sizes to be identical. For both gene
T

expression and LDL-C, we estimate values of d close to

0, demonstrating that our estimator bd has the desired

behavior when causal effect sizes are identical between

populations (Figure S7).

Finally, we used our model to test whether causal variants

have the same effect size inAfricanAmericans and European

Americans. For gene expression, bd is significantly greater

than 0, with a maximum likelihood estimate (MLE) of 0.47

and a 95% CI of ð0:39; 0:53Þ (Figure 3B). For LDL-C, we esti-

mate a similar MLE of 0.46 with a 95% CI of ð�0:06;0:87Þ
(Figure 3C). Moreover, we find that the term containing

d contributes modestly to phenotypic variance: 0:01% for

gene expression, 0:01% for LDL-C. Thus, our results indicate

that SNPs in regions of European ancestry in African Ameri-

cans and EuropeanAmericans have differentmarginal effect

sizes. This suggests that causal variant effect sizes differ be-

tweenpopulations because theyaremodified by the genome

or environment, providing evidence for gene-by-gene or

gene-by-environment interactions.
he American Journal of Human Genetics 109, 1–12, July 7, 2022 9
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Discussion

We developed a model in which we introduce the param-

eter d to test for the existence of genetic interactions. Spe-

cifically, we leveraged regions of European ancestry shared

between African Americans and European Americans to

compare marginal effect sizes of trait-associated SNPs in a

manner unbiased by LD structure. We applied our model

to two traits, gene expression in MESA and LDL-C in

MVP. For gene expression, we observe that bd is significantly
greater than 0, implying that causal variant effect sizes

differ between African Americans and European Ameri-

cans. For LDL-C, we obtain an MLE for d that is similar to

that from gene expression but not significantly greater

than 0. These observed differences in causal variant effect

sizes between populations must be due to unmodeled

gene-by-gene or gene-by-environment interactions. Our

observation that causal variant effect sizes differ between

populations is also relevant to previous work on quanti-

fying cross-population genetic correlations.16,17 There is

no straightforward analytical relationship between our

parameter d and genetic correlation, but our results are

intuitively consistent with a cross-population genetic cor-

relation less than 1.

Though we observe that causal variant effect sizes signif-

icantly differ between populations, we also find that the

inclusion of the d term in the model does not substantially

increase the amount of phenotypic variance explained.

This apparent discrepancy may be explained by noting

that we evaluate model performance on the full dataset

of African Americans and European Americans, but the

d term will only improve the modeling of effect sizes in re-

gions of European ancestry in African Americans, which

only represents about 10% of the full dataset.

Our results have implications formodeling complex trait

phenotypes with polygenic scores (PGSs). We find that

trait-associated SNPs ascertained in Europeans have atten-

uated effect sizes in African Americans, which is consistent

with European-ascertained SNPs tagging causal variants

poorly in African ancestry. Thus, our findings corroborate

earlier work demonstrating that differences in LD structure

contribute to poor PGS portability, reiterating that a PGS

will perform best when constructed from a population

with similar LD structure.15,40–43 Moreover, our findings

imply the existence of genetic interactions, which chal-

lenges the assumption of additivity made by the statistical

genetic models underpinning PGSs. This suggests that ge-

netic interactions could contribute to poor PGS portability,

though it remains unclear to what extent they may do so.

Future directions include applying our model to addi-

tional traits. The larger confidence interval we observe

for LDL-C is most likely due to differences in statistical po-

wer between the two traits. Though we used significantly

associated SNPs for both traits, many fewer SNPs were

used in LDL-C analyses (122 SNPs) than in gene expression

analyses (4,236 SNPs). Moreover, trait-associated SNPs

were ascertained within the same dataset (MESA) for
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gene expression but were ascertained from an external da-

taset (UK Biobank) for LDL-C. This should not bias the esti-

mation of d but may mean that trait-associated SNPs cap-

ture a larger proportion of phenotypic variance for gene

expression relative to LDL-C. Thus, by applying our model

to additional traits, such as those with thousands of associ-

ated SNPs, we could gain further insights into the role of

genetic interactions in complex traits. Another area of

investigation includes adapting our model to understand

how the magnitude of genetic interactions varies across

SNPs or individuals. We only estimate one parameter

d from all trait-associated SNPs in order to maximize po-

wer, but by understanding how d varies with certain func-

tional genomic properties of SNPs or with individuals’

ancestry, we could begin to untangle the contributions of

gene-by-gene versus gene-by-environment interactions.

In summary, we find evidence for genetic interactions by

testing for differences in causal variant effect sizes between

populations. This analysis is motivated by the assumption

that the African American and European American indi-

viduals in our datasets have sufficiently different genetic

or environmental backgrounds such that the existence of

gene-by-gene or gene-by-environment interactions will

produce modest differences in causal variant effect sizes.

However, we reiterate others’ findings that there is a great

deal of genetic and environmental heterogeneity within

human populations.43–45 Thus, it is worth noting that if

causal variant effect sizes can be modified by gene-by-

gene or gene-by-environment interactions, it follows that

causal variant effect sizes will differ not only between pop-

ulations, but also between individuals within a popula-

tion. Ultimately, our results give insight into the impor-

tance of genetic interactions in human complex traits.
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