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1 Robustness of the data analyses

In this section we test the robustness of our results and conclusions to many of the choices made
for our main analyses, showing that our results replicate for different choices of traits and tissues,
sources of GWAS and eQTL data sets, and strategies to link variants to their target genes.

1.1 GWAS analyses

Choice of traits. In the main analyses presented, we focused on 44 complex traits from the UK
Biobank (UKB), chosen such that no pairs of traits are highly correlated (see Online Methods). 14
of the resulting traits are blood cell and immune related traits, contributing about half of the final
GWAS SNPs (12,157 out of 22,119). Furthermore, UKB is a prospective study, and UKB-based
GWAS for disease traits may not be as powered for variant discovery as case-control studies.

To test the robustness of our results to the choice of traits, we first extended our analysis of UKB
to construct three additional groups of traits: (Group 1) 1,083 traits analyzed by the Neale lab [1]
(83,401 GWAS hits ascertained following the same procedures described in the Online Methods).
We also split the 44 traits used for our main analyses into 14 blood/immune related traits (Group
2, 12,157 GWAS hits) and 30 non-blood/immune related traits (Group 3, 9,962 GWAS hits). We
selected blood/immune related traits based on GWAS variants enrichment in myeloid/erythroid or
lymphoid specific open chromatin regions [2]. See Supplementary Methods for details.

Second, we analyzed 39,932 lead GWAS SNPs for 1,488 traits curated by the GWAS ATLAS [3].
We note that there is a substantial overlap between the traits in GWAS ATLAS and UKB. Yet,
the GWAS ATLAS includes GWAS data for tens of complex diseases and disorders that are not
well-represented in UKB. We constructed six groups of traits. Group 1: 1,488 traits in GWAS
ATLAS (39,932 GWAS hits); Group 2: 154 traits labeled with the term "disease" or "disorder"
(3,551 GWAS hits); Group 3: 92 traits labeled with the term "disease" (2,405 GWAS hits); Group
4: a pruned set of 173 traits from set (1) (7,531 GWAS hits); Group 5: a pruned set of 40 traits
from group 2 (1,233 GWAS hits); Group 6: a pruned set of 23 traits from group 3 (821 GWAS hits).
For the last three groups pruning was performed as described in Online Methods to exclude highly
correlated trait pairs (genetic correlation > 0.5). See Supplementary Methods for details.

We used our logistic regression framework (as used for the analysis presented in Fig. 3B) to
evaluate the genic features differentiating the sets of GWAS SNPs detailed above and random SNPs
after adjusting for potential confounders (see Online Methods). For all genic features we studied,
the regression coefficients are similar (in both magnitude and direction of effect) across all sets of
traits and are consistent with the trends reported in the main text: GWAS hits are more likely to
be near genes that are under strong selective constraint, have complex regulatory landscapes, and
are linked with functional annotations (Supplementary Fig. 1). We also show that enrichment of
GWAS variants near TSSs is similar across all sets of traits (Supplementary Fig. 2). Note that the
trait groups considered here are potentially overlapping.
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Supplementary Fig. 1: Robustness of GWAS gene properties to trait choice. Properties
of GWAS hits from the UK Biobank [1] and GWAS ATLAS [3] for different strategies of choosing traits.
Points show logistic regression coefficients corresponding with different genic features for predicting GWAS
hits versus random SNPs after adjusting for confounders. Results are plotted as regression coefficients ±2

standard errors. Colors demonstrate regression models: features are tested one at a time, with the exception
of the two enhancer features that are tested in a joint model. Shapes correspond to different strategies for
grouping traits. The group "UKB: independent traits" includes all 44 complex traits studied in the main text.
The numbers in the legend represent the count of GWAS hits in each trait set. See Supplementary Methods
for details.
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Supplementary Fig. 2: Robustness of GWAS SNPs enrichment near TSSs to trait choice.
Distance of GWAS hits to the nearest TSS. Points show fraction of GWAS hit SNPs in 10Kb bins. Results
are plotted as fractions ±2 standard errors. Standard errors are computed as

√
2f(1− f)/M , where f is

the estimated fraction, and M is the number of hits per group. SNPs more than 100Kb away from their
closest TSS are not shown for clarity. Colors correspond to different strategies for grouping traits. The
group "UKB: independent traits" includes all 44 complex traits studied in the main text. The numbers in the
legend represent the count of GWAS hits in each trait set. See Supplementary Methods for details.

We further sliced the GWAS ATLAS traits in group 4 described above into two "disease" and
"non-disease" categories, and then divided the "non-disease" category into 5 non-overlapping do-
mains: cognitive, reproduction, metabolic, physical, and immunological traits (Supplementary Fig.
3). We note that enrichment of different gene features seems to be more pronounced for disease and
immunological traits, and less so for metabolic and physical traits. For example, high pLI genes
are most enriched near GWAS genes for disease traits, which appears to be consistent with some
previous studies inferring stronger selection on variants underlying complex diseases compared to
other categories [4]. That said, we caution against over-interpretation of these trends, because: one,
there are relatively few (around 900) GWAS hits per category and so trends for individuals trait
categories are noisy. Two, there is a large variation in the number of GWAS hits for different traits,
and trait categories. For example, we have around 6 traits and around 170 GWAS hits per trait
in the physical domain, compared to 23 disease traits and around 35 GWAS hits per disease. It is
plausible that for a given trait, the properties of top GWAS hits are different from less significant
hits. Three, the properties of variants discovered in GWAS depend on features such as heritability
and the degree of polygenicity, which are highly variable across traits [5]. Four, many variants or
genes underlying complex traits contribute to multiple traits, i.e., are pleiotropic, and thus some of
their properties, such as the strength of natural selection acting on them, would depend on their
effect in the multi-phenotype space. Therefore, prior expectations in the trait space, e.g., stronger
selection on disease traits, may not translate to similar trends on the underlying variants and genes.
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Supplementary Fig. 3: GWAS gene properties by trait category. Properties of GWAS hits from
the GWAS ATLAS [3] grouped by trait category. Points show logistic regression coefficients corresponding
with different genic features for predicting GWAS hits versus random SNPs after adjusting for confounders.
Results are plotted as regression coefficients ±2 standard errors. Colors demonstrate regression models:
features are tested one at a time, with the exception of the two enhancer features that are tested in a joint
model. Shapes correspond to different strategies for grouping traits. The numbers in the legend represent the
count of GWAS hits in each trait set. See Supplementary Methods for details.

Choice of SNP-to-gene linking method. For our main analyses, we linked GWAS SNPs to
genes with the closest TSS as a proxy for their target genes. The closest gene approach is applicable
to all SNPs, which is not the case for other more sophisticated approaches to nominate GWAS
genes, while it yields a comparable (and in many cases higher) accuracy [6, 7]. Nevertheless, we
show that our main results are robust to this choice.
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Supplementary Fig. 4: Properties of GWAS genes prioritized by different SNP-to-gene
linking strategies. Properties of GWAS genes from the PoPS method by Weeks et al. [8] (A) and the
cS2G approach by Gazal et al. [7] (B). Each point corresponds to a trait, showing logistic regression Z-
score (regression coefficient divided by the standard error) corresponding with different genic features for
predicting GWAS genes versus non-GWAS genes. The size of the points show the number of genes assigned
per trait. Colors demonstrate regression models: features are tested one at a time, with the exception of
the two enhancer features that are tested in a joint model. See Supplementary Methods for details, and
Supplementary Data for Z-scores for individual traits.
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To this end, we analyzed the genes nominated by two independent methods: (i) 25,252 SNP-gene
links across 113 traits provided by Weeks et al., using a machine learning approach, named PoPS,
which integrates GWAS data with external functional annotations [8]; (ii) 6,655 SNP-gene links
across 47 traits provided by Gazal et al., by integrating earlier SNP-to-gene linking strategies into
a combined score (cS2G) for gene prioritization [7]. For each trait studied by these two approaches,
we used a logistic regression model to evaluate genic features that differentiate GWAS genes versus
other protein-coding genes, showing results consistent with the trends we show for the closest genes
(Supplementary Fig. 4; each point represents a trait). See Supplementary Methods for details.

1.2 eQTL analyses

eGenes versus closest genes. In our main analysis we linked eQTLs to their closest genes despite
knowing the true target genes, i.e., eGenes. The main rational for this approach is consistency with
our GWAS analysis (as the target genes for GWAS SNPs are unknown and we link those to their
closest genes), although it introduces noise to our eQTL analysis by mis-assigning eQTL targets. In
fact, for 48% of GTEx eQTLs that we analyzed, the eGene was not the gene with the closest TSS.
The closest gene approach is more accurate for eQTLs with stronger association signal (Extended
Data Fig. 1A), presumably because stronger eQTLs lie at closer distances to their target gene’s
TSS.

We re-performed all of our gene-level analyses for eQTLs using eGenes instead of the closest
genes. For all genic features, the difference between eGenes and control genes (i.e., genes closest to
control SNPs matched to eQTLs for MAF, LD score and gene density) are more pronounced than
that for closest genes, demonstrating that gene mis-assignments merely dilute the trends towards
random SNPs (Extended Data Fig. 1B, Supplementary Fig. 5, Supplementary Fig. 6). It follows
that the systematic differences between true GWAS and eQTL targets are likely larger than what
is observed for the closest genes.

Primary versus secondary eQTLs. As we show in the main text, GWAS SNPs lie at longer
distances to TSSs compared to eQTLs (Fig. 5A), and under our model include weak eQTLs acting
on phenotypically important genes. This raises the question: are weaker eQTLs discovered in eQTL
studies more similar to GWAS SNPs? To get at this question, we studied eQTL properties by
the ranking of the lead eQTLs at eGenes (after LD clumping), i.e., first most significant eQTLs,
second most significant eQTLs, and so on. Weaker discovered eQTLs lie at longer distances to
TSS (Supplementary Fig. 7A), consistent with previous findings [9], and on par with GWAS SNPs.
However, these weaker eQTLs are discovered at genes that are more dissimilar to GWAS genes
(Supplementary Fig. 7B), that is are under weaker selection, have simpler regulatory landscapes,
and are more depleted of functional annotations. Note that this does not mean that GWAS hits
are not secondary or tertiary eQTLs. Rather, genes for which we have the power to detect multiple
eQTLs are even more biased toward unimportant genes. In our model terms, secondary eQTLs on
average have smaller β2 than primary eQTLs and so are more similar to GWAS variants in that
regard. That said, detection power for these eQTLs is higher at genes with smaller γ2, and so
are overall less GWAS-like than primary eQTLs. These trends would not hold at the limit where
most/all eQTLs are discovered.
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Supplementary Fig. 6: eGenes are more depleted of functional annotations than eQTL
closest genes. A) Enrichment of genes in 41 GO terms shown in Fig. 4A relative to control SNPs, for
eQTL genes (left) and eGenes (right). Color map indicates enrichment (green) or depletion (magenta) of
gene sets. See Fig. 4A for more details. B) Replication of Fig. 4C. Gene enrichments relative to control
SNPs (y-axis) across gene bins ranked by the counts of GO terms they belong to (x-axis). C) Replication of
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estimated fraction, and M is the number of eQTLs per group. SNPs more than 100Kb away from their
closest TSS are not shown for clarity. B) Properties of eGenes linked with different eQTL groups. Points
show logistic regression coefficients corresponding with different genic features for predicting eGenes linked
with eQTLs versus genes linked with random SNPs (closest genes) after adjusting for confounders. Results
are plotted as regression coefficients ±2 standard errors. In both panels, colors correspond to different eQTL
groups based on the ranking of lead variants (after LD clumping) with respect to eGenes. Specifically, for
each eGene we labeled the first most significant eQTL as rank 1, second most significant eQTL as rank 2, and
so on. We then grouped eQTLs across all eGenes by these rank labels. The numbers in the legend represent
the count of eQTLs in each set.
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eQTL data set. Our main analyses focused on eQTLs identified by the GTEx project [15],
pooling eQTLs across 38 tissues. We first show that the eQTL properties we studied are robust
to the choice of GTEx tissues. Focusing on top 10 tissues with most eQTLs we obtained similar
regression coefficients across tissues for eGene features in our logistic regression model classifying
eQTLs from random SNPs (Supplementary Fig. 8).
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Supplementary Fig. 8: Robustness of eQTL properties across GTEx tissues. Points show
logistic regression coefficients corresponding with different genic features for predicting eGenes linked with
eQTLs versus genes linked with random SNPs (closest genes) after adjusting for confounders. Results are
plotted as regression coefficients ±2 standard errors. Colors demonstrate regression models: features are
tested one at a time, with the exception of the two enhancer features that are tested in a joint model. Shapes
correspond to the top 10 tissues in GTEx with the highest number of detected eQTLs. For comparison,
regression coefficients computed with the GWAS data for the 44 complex traits from the UKB are also shown
(solid circles), as previously presented in Supplementary Fig. 1. The numbers in the legend represent the
count of variants in each set.
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We note that eQTL discovery power is higher for genes with higher expression levels. Given that
gene expression patterns vary across different tissues, we extended our regression model to adjust
for tissue-specific expression levels as provided by GTEx (Supplementary Methods). The similarity
across tissues shown in Supplementary Fig. 8 is robust to this adjustment (Supplementary Fig. 9).
Notably, the distinction between eQTLs and random SNPs with respect to most genic features is
more pronounced after adjusting for tissue-specific expression levels. That said, the enrichment of
eQTLs at genes with active regulation across multiple tissue/cell types is explained by increased
expression levels of these genes (Supplementary Fig. 9).
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Supplementary Fig. 9: Properties of eQTLs adjusting for tissue-specific eGene expression
levels in GTEx. Same as Supplementary Fig. 8, but adjusting for tissue-specific eGene expression levels
in the logistic regression model in addition to other confounders. Results are plotted as regression coefficients
±2 standard errors. See Supplementary Methods for details.
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We further demonstrate similar clustering of eQTLs near TSS for different tissues (Supplemen-
tary Fig. 10). These results recapitulate the trends reported in the main text for the pooled set of
eQTLs.
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Supplementary Fig. 10: Robustness of eQTLs enrichment near TSSs to tissue choice in
GTEx. Distance of eQTLs to the nearest TSS. Points show fraction of SNPs in 10Kb bins ±2 standard
errors. Standard errors are computed as

√
2f(1− f)/M , where f is the estimated fraction, and M is the

number of eQTLs per group. SNPs more than 100Kb away from their closest TSS are not shown for clarity.
Colors correspond to the top 10 tissues in GTEx with the highest number of detected eQTLs. The numbers
in the legend represent the count of eQTLs in each set.

Second, we extended our analysis to include eQTLs and eGenes from two resources other than
GTEx: (i) the eQTL catalogue [16], and (ii) the eQTLGen consortium [17].

The eQTL catalogue provides uniformly processed eQTLs curated from several public data sets
including GTEx [16]. Notably, it includes cell type specific eQTLs from a variety of cell types.
Focusing on gene expression eQTLs in the eQTL catalogue, we observed similar eGene features for
GTEx (68,009 eQTLs) and non-GTEx eQTLs (74,366 eQTLs), and consistent with previous results
(Supplementary Fig. 11). See Supplementary Methods for details.

The eQTLGen consortium is a large-scale meta-analysis of several blood eQTL studies (net
sample size of around 32K) [17], and is a suitable data set to study discovery trends as eQTL
sample sizes grow. Most expressed genes in blood (88%) are discovered as eGenes in the eQTLGen
data [17]. We processed eQTLGen eQTLs similarly to GTEx eQTLs, resulting in 230,032 cis-eQTLs
(Supplementary Methods). We sliced these eQTLs into 10 groups based on the deciles of association
p-values, mimicking the progressive discovery of eQTLs with sample size, and to avoid pooling a large
number of eQTLs which could complicate the interpretations. Most properties of eQTLGen eGenes
are consistent with previous results (Supplementary Fig. 12A), with the exception of TSS count and
connectedness in PPI networks. Compared to other genic features, these features also show weaker
consistency between GTEx and non-GTEx eQTLs in the eQTL catalogue (Supplementary Fig.
11), and across tissues in GTEx (Supplementary Fig. 8). That said, we find that after adjusting
for gene expression levels in blood, all eGene properties in eQTLGen are consistent with GTEx
(Supplementary Fig. 12B and Supplementary Fig. 9). These observations suggest that differences
between eQTLGen and GTEx are potentially due to covariance between gene expression levels and
other gene properties of interest, considering that eQTLGen study is powered to detect eQTLs for
many low-expressed genes that are not detected as eGenes in GTEx.
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A   Properties of gene expression eQTLs vs. random SNPs (only GTEx)

B   Properties of gene expression eQTLs vs. random SNPs (excluding GTEx)

Supplementary Fig. 11: Genic features of eQTLs from the eQTL catalogue [16]. Properties
of eGenes linked with eQTLs in the GTEx study (A), and in other eQTL studies processed by the eQTL
catalogue, i.e., excluding GTEx (B). Each point corresponds to an eQTL study, showing logistic regression
Z-score (regression coefficients divided by the standard errors) corresponding with different genic features
for predicting eGenes linked with eQTLs versus genes linked with random SNPs (closest gene). Colors
demonstrate regression models: features are tested one at a time, with the exception of the two enhancer
features that are tested in a joint model. See Supplementary Data for Z-scores for individual studies.
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A   Properties of eQTLs vs. random SNPs: regression with baseline covariates

B   Properties of eQTLs vs. random SNPs: regression with baseline covariates + expression level in blood
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Supplementary Fig. 12: Genic features of eQTLs from the eQTLGen consortium [17]. A)
Points show logistic regression coefficients corresponding with different genic features for predicting eGenes
linked with eQTLs versus genes linked with random SNPs (closest genes) after adjusting for our baseline
confounders. 230,032 eQTLs are evenly split into the 10 p-value bins shown. See Supplementary Methods
for details. B) Same as (A), but adjusting for blood-specific gene expression levels in addition to other con-
founders. In both panels, results are plotted as regression coefficients ±2 standard errors. Colors correspond
to different eQTL groups based on the deciles of association p-values.
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In summary, taken together with our analyses of brain eGenes from fetal samples and iPSC
differentiations, and cell type specific eGenes from blood presented in Extended Data Fig. 8, these
results suggest that the eQTL properties we find are general to all types of eQTL studies, e.g.,
bulk assays or assays based on single purified cell types, studies of eQTLs in adult samples or
developmental stages, etc. and not specific to GTEx post-mortem whole tissues. That said, some
properties are robustly observed across all studies (e.g., depletion of genes under strong selection
from eQTL genes), while trends related to gene regulatory features and networks (e.g., TSS count
and connectedness in PPI networks) seem to be more variable and possibly tissue or cell type
dependent.

1.3 Other QTLs

Our QTL analyses in this paper focused on eQTLs, i.e., genetic effects on gene expression levels.
Specifically, we show that discovered eQTLs are systematically different from GWAS variants, and
present a model to explain these differences, highlighting the role of natural selection. We reason
that natural selection likely hampers the discovery of trait-relevant variants in QTL assays for other
molecular intermediates. Comprehensive analyses of other QTLs is beyond the scope of this paper,
nevertheless, we show a few examples that are broadly consistent with this argument. Specifically,
we studied four QTL classes (see Supplementary Methods for details):

Exon QTLs. We analyzed 1,088,880 QTLs linked with exon level expression in 49 GTEx tissues
ascertained by the eQTL catalogue [16], comparing the properties of genes with exon QTLs and
genes nearest to random SNPs after adjusting for potential confounders.

Splicing QTLs. We processed 67,250 splicing QTLs (or sQTLs) across 23 tissues in GTEx [15],
comparing the properties of genes with sQTLs (or sGenes) and genes nearest to random SNPs after
adjusting for potential confounders.

Interaction eQTLs. We analyzed 530,819 eQTLs in GTEx that show cell type specific effects
(cell type-interaction eQTLs or ieQTLs [18]), comparing the properties of genes with ieQTLs (or
ieGenes) and genes nearest to random SNPs after adjusting for potential confounders.

Methylation QTLs. We analyzed 336,732 CpG sites that were tested for methylation QTLs by
Hawe et al., [19]. We linked each CpG site to its nearest gene, and compared genes with and without
detected methylation QTLs.

We used our logistic regression framework to compare features of gene sets described above.
We focused on gene annotations related to broad biological functions and selective constraint, as
we expect these features to be less sensitive to the particular biology of each molecular phenotype.
Genes linked with all QTL classes are depleted of these features (Supplementary Fig. 13) similar
to eQTLs.
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A Exon QTLs vs. random SNPs
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Supplementary Fig. 13: Properties of other QTLs. A) Properties of genes linked with exon QTLs
from the eQTL catalogue [16] versus genes linked with random SNPs (closest gene). Each point corresponds
to a GTEx tissue. B) Properties of genes linked with splicing QTLs in GTEx [15] versus genes linked with
random SNPs (closest gene). Each point corresponds to a GTEx tissue. C) Properties of genes linked with
cell type interaction QTLs (ieQTLs) in GTEx [18] versus genes linked with random SNPs (closest gene).
Each point corresponds to a tissue-cell type pair tested by the GTEx team. D) Properties of genes linked
with CpG sites for which methylation QTLs were detected by Hawe et al. [19] (N=64,478) versus CpG sites
without any detected methylation QTL (N=272,254). Results are plotted as logistic regression coefficients
±2 standard errors. In panels (A-C), points show logistic regression Z-scores (regression coefficients divided
by the standard errors) corresponding with different genic features (colors) to predict the QTLs of interest
versus control SNPs described for each panel. See Supplementary Data for values for individual data points.

18



2 Power considerations in GWAS and eQTL mapping

In this section we present power considerations for variant discovery in GWAS and eQTL assays to
show that: (i) per-SNP contribution of variants to complex traits and gene expression phenotypes,
and thus sample size requirements for discovery in the two mapping strategies, vary by orders of
magnitude. (ii) GWAS and eQTL assays are generally low-powered, likely ranging from 10–20% at
typical sample sizes that are currently available for association studies.

Per-SNP heritability, and sample size requirements. Complex traits are usually extremely
polygenic, with estimates for the number of causal variants on the order of 10K-100K [7, 20, 21].
Therefore, a typical per-SNP contribution to trait heritability, h2SNP /h

2, is on the order of 10−4–
10−5, where h2 is the total trait heritability and h2SNP is the fraction of trait variance explained by a
given SNP. Gene expression is expected to be much less polygenic than organismal phenotypes which
result from aggregate effects of hundreds to thousands of genes [7, 22]. For example, we estimate
a median value of 15 roughly independent cis-eQTLs across eGenes in the eQTLGen study [17]
(Supplementary Methods), on the same order of magnitude as previous analyses [23]. Considering
tens of causal variants with local effect on gene expression (i.e., in cis), h2SNP /cis-h

2 for cis-eQTLs
is on the order of 10−1. Thus, causal variants typically have much larger (103–104 times larger)
contributions to cis-expression heritability than to complex trait heritability.

As a result, with respect to variant discovery, much larger sample sizes are required in GWAS
than eQTL assays. As detailed in the Online Methods section, in expectation, the discovered
variants in GWAS and eQTL assays satisfy: h2SNP > χ2

c/n, where n is the sample size, and χ2
c is

the study-dependent discovery threshold. The conventional GWAS threshold of p-value= 5× 10−8

corresponds to χ2
c = 29.7. In an eQTL study, if we assume a p-value threshold of ∼2 × 10−4 (on

par with nominal p-value threshold values computed in GTEx at a gene-level false discovery rate
threshold of 0.05 [15]), the corresponding χ2

c ≈ 14. With typical sample sizes of around 500K
for GWAS (e.g., the UK Biobank) and 500 for eQTL assays (e.g., the GTEx consortium), the
discovered GWAS variants and eQTLs will have h2SNP > 6× 10−5 and h2SNP > 0.028, respectively.
Now, consider a SNP which contributes 10% to cis-expression heritability of its target gene, and
0.01% to the heritability of the downstream complex trait. Considering a heritability of 0.2 for a
typical complex trait, a GWAS sample size of around 1.5 million is required for the SNP’s discovery.
On the other hand, considering a typical cis-expression heritability of 0.05 [23, 24], sample sizes on
the order of 3K are required for its discovery as an eQTL.

Variant discovery power at current sample sizes. Sample sizes that are currently available
for association studies are typically on the order of 105–106 for GWAS (e.g., the UK Biobank)
and 102–103 for eQTL assays (e.g., the GTEx consortium). A quantitative analysis of the variant
discovery power with such sample sizes requires knowledge about the genetic architecture of complex
trait and gene expression phenotypes, specifically the joint distribution of the effect sizes and allele
frequencies of the causal SNPs. This is a challenging task due to the extreme polygenicity of most
traits and confounding by LD (linkage disequilibrium) which complicates identifying the causal
variants within a given genomic locus with evidence for trait association.

Nevertheless, many lines of evidence suggest that current association studies are far from satu-
ration in terms of discovering the causal loci:

(i) For most traits, discovered variants at current sample sizes explain a small fraction of heri-
tability. For example, a GWAS for systolic blood pressure using over 1 million samples discovered
901 loci explaining only about 27% of heritability [25]. Similarly, in an eQTL analysis for blood
from 2,765 individuals, averaged across genes, discovered eQTLs explained about 31% of heritabil-
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ity for gene expression, most of which (87%) could be attributed to the single top eQTL of the
genes [23]. These suggest that variants with smaller effect sizes than the currently discovered ones
likely constitute a larger fraction of heritability and thus many more are yet to be discovered. In
line with these observations, using a statistical method, O’Connor recently estimated that on the
order of 1-100 millions of samples are needed to discover variants that explain up to 90% of variance
for most studied complex traits [21].

(ii) Association studies with growing sample sizes over time keep discovering new variants.
This is mostly notable for complex traits that are easily measured such as height and educational
attainment, and for tissue and cell types which are easier to sample, particularly blood. The latest
GWAS for height by Yengo et al., reached a sample size of 5.4 million, discovering 12,111 independent
loci at the genome-wide significance level [26], which is much more than discoveries with smaller
sample sizes (Table 2 in Yengo et al., [26]). For comparison, with sample sizes of around 240K and
700K (which is typical for most GWAS), around 600 and 2,800 loci were discovered, corresponding
to power estimates less than 5% and 23%, respectively, based on the number of loci discovered by
Yengo et al. [26]. Similarly for eQTLs, a recent study of blood eQTLs by the eQTLGen consortium
reached a sample size of around 32K [17]. Our analysis of this data set yields around 250K roughly
independent cis-eQTLs for 12,659 protein-coding autosomal eGenes (Supplementary Methods). The
same ascertainment procedure applied to whole blood in GTEx for 670 individuals (which is on the
same scale as sample sizes available for most eQTL studies) yields 28,645 cis-eQTLs for 7,953 eGenes,
corresponding to a power estimate of less than 11% based on the number of discoveries in eQTLGen.

Taken together, these considerations suggest that GWAS and eQTL assays are generally low-
powered at currently available sample sizes.
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3 Robustness of the model

In this section we further examine our model for variant discovery in GWAS and eQTL assays, and
perform an extensive survey of our modeling assumptions and choices. We focus on our single cell
type (or 1-D) model in this part, and will explore more complicated scenarios in a later section
(Model extensions). We conclude that: (i) the qualitative predictions of our model about what
types of genes and variants are discovered in GWAS and eQTL assays are robust, and (ii) making
quantitative predictions requires several additional assumptions, with many parameters that are
unknown and not easily estimated with current data.

3.1 Key qualitative predictions

Our first key consideration is that in eQTL assays variants are more likely to be discovered if they
have large effects on gene expression levels, β2 in our model. On the other hand, in GWAS, the
likelihood of discovery is not only dependent on a variant’s effect on expression, but also how relevant
the target gene is to the phenotype, γ2 in our model. We model the net effect of the variant as βγ.
These arguments do not rely on strong assumptions.

Our second key consideration is that discovery of a given variant in both GWAS and eQTL
assays also depends on its minor allele frequency, p; discovery power is higher for more common
variants. Under neutral evolution, p and effect sizes are independent, and thus variation in p, on
average, does not modify the trends described above. When a phenotype is under natural selection
however, variants with large phenotypic effects (i.e., large β2γ2) are kept at lower frequencies.

Based on previous evolutionary analyses of traits under stabilizing selection [27,28], we consid-
ered selection to have a "flattening" effect: for variants with small effect sizes selection is weak and
thus contribution to variance, E[2p(1−p)β2γ2], scales roughly linearly with effect size. For variants
with very large effect sizes selection is strong, lowering p such that E[2p(1−p)β2γ2] plateaus. Under
this model of selection, selection more strongly constrains regulatory variants acting on phenotyp-
ically important (high γ2) genes, disproportionately degrading eQTL signal, 2p(1 − p)β2, at such
genes. On the other hand, considering 2p(1 − p)β2γ2 for GWAS discovery, lowering of p at these
genes is compensated by high γ2 values, and thus selection on average does not change the ranking
of variants in GWAS.

Determining exactly how discovery trends are affected by selection requires a model for the joint
distribution of p and the effect sizes, β and γ. Importantly however, our qualitative predictions
on the effect of selection hold as long as p decreases monotonically with increasing phenotypic
effect β2γ2, and do not rely on how exactly the flattening effect is formulated. Nevertheless, for
visualization purposes we made some modeling choices: we used an asymptotic exponential form
to describe the relationship E[2p(1 − p)β2γ2|β, γ] ∝ κ(1 − e−β2γ2/κ). We also assumed β and γ

values are drawn from independent standard Normal distributions. We made an arbitrary choice of
κ = 2.986 such that E[2p(1− p)] is reduced by ∼10% compared to the neutral scenario.

We used simulations under these assumptions to show discovery regions of GWAS and eQTL
assays with and without natural selection (Supplementary Fig. 14A, same as trends shown in main
Fig. 6). We also show the average properties of variants and genes that fall in the discovery regions
with increasing study power, by progressively including variants based on 2p(1 − p)β2 values as
eQTLs, and based on 2p(1− p)β2γ2 values as GWAS hits (Supplementary Fig. 14B). These trends
are consistent with the intuitions provided above, and with the data we present in the main text.
Notably, under selection, eQTL assays prioritizes high β2 variants but at low γ2 genes.
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In the remaining we systematically modify the assumptions listed above showing that these
qualitative trends are robust to the specific modeling choices made.
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Supplementary Fig. 14: Main qualitative model predictions. Model predictions under our baseline
assumptions and choices of parameters: (i) a single cell type affecting a single phenotype, (ii) the SNP
effect on gene expression, β, and the gene effect on phenotype, γ, drawn from independent standard Normal
distributions, (iii) modeling selection to have a flattening effect formulated as E[2p(1− p)β2γ2|β, γ] ∝ κ(1−
e−β2γ2/κ), where p is the allele frequency, and κ determines the strength of selection tuned to give ∼10%

reduction in the average contribution to phenotypic variance across all causal SNPs relative to the neutral
scenario. All results are based on 10 million simulated causal SNPs. See Supplementary Methods for details.
A) Shading colors represent parameter space for the discovery of GWAS hit only (blue), eQTL only (red),
and both types (purple) for the case of a neutrally evolving phenotype (left panel) and the case of a phenotype
under selection (right panel). The discovery lines are derived assuming 15% power in both assays (see
Online Methods). B) The mean properties of variants discovered as GWAS hits (blue) or eQTLs (red) with
progressively increasing the discovery power in either assay. For a given study power X, points show the
mean expression effect (mean β2 values, circle) and the mean gene effect (mean γ2 values, triangle) of the
top X% of variants, ranked based on their strength of association signal in either assay, that is 2p(1−p)β2γ2

for GWAS and 2p(1 − p)β2 for eQTL mapping. The dashed lines show the mean values for all simulated
causal SNPs.

3.2 Joint distribution of β and γ

In this part, we derive results under different scenarios for the distributions of β and γ, while keeping
other modeling choices (e.g., selection model parameters) fixed unless explicitly mentioned. Our
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reference for comparison is Supplementary Fig. 14 which is based on β and γ values drawn from
independent standard Normal distributions.

We first show that a different strategy for drawing gene effect sizes yields similar results. Specifi-
cally, in our main figures, we simulate 10 million SNPs with β and γ values drawn from independent
standard Normal distributions. We varied this step by first drawing gene effects for 20K genes, and
then sampling from these genes to assign to each SNP. Discovery trends under this sampling scheme
(Supplementary Fig. 15) are almost identical to Supplementary Fig. 14.
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Supplementary Fig. 15: Model results with modified gene effect sampling. Modeling and
simulation details are similar to Supplementary Fig. 14, but using a two step sampling scheme for gene
effects, γ2: we first sampled 20K γ values from N(0, 1) corresponding to 20K genes, and then randomly
sampled 10 million values with replacement from this set corresponding to 10 million linked SNPs.

We next show that the discovery regions are qualitatively similar if we consider effects drawn from
a mixture of two Normal distributions with different widths (Supplementary Fig. 16A), representing
two sets of regulatory variants (e.g., promoter and enhancer variants) and two sets of genes. Also,
the trends in the mean effects of variants prioritized by GWAS and eQTL designs in this scenario
(Supplementary Fig. 16B) mirror trends in Supplementary Fig. 14B, though the absolute differences
between GWAS and eQTL effects are larger.

Next we varied the correlation between β2 and γ2, ρβ2,γ2 (Supplementary Fig. 17, see Sup-
plementary Methods for details.) The discovery curves are qualitatively similar, whether ρβ2,γ2 is
positive or negative (Supplementary Fig. 17A,B). That said, the exact shape of the discovery curves,
the mean effect sizes of the variants that fall in the discovery regions, and how much these properties
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are affected by selection are sensitive to ρβ2,γ2 , particularly for eQTL discovery: when ρβ2,γ2 < 0,
detected eQTLs with high β2 are disproportionately located at low γ2 genes (Supplementary Fig.
17C). Furthermore, although selection has a strong effect on variants in the top-right corner of
the parameter space, i.e., large β2 and large γ2, few such variants exist in this scenario, and thus
the mean effect of selection across variants is small (Supplementary Fig. 17C). When ρβ2,γ2 > 0,
detected eQTLs with high β2 are located at high γ2 genes, albeit with average genic effects that are
smaller than GWAS variants (Supplementary Fig. 17C). Also, under this scenario, there are many
more variants in the high selection region of the parameter space, and the net impact of selection
is higher.
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Supplementary Fig. 16: Model results with effects drawn from a mixture of two Normal
distributions. Modeling and simulation details are similar to Supplementary Fig. 14, but sampling β and
γ values from a mixture of two Normal distributions as shown in panel (A). Discovery regions and trends
shown in panels (B) and (C) are derived and presented similar to panels (A) and (B) in Supplementary Fig.
14, respectively.

What biological factors determine the joint distribution of β2 and γ2? A key factor is the vari-
ability of regulatory architecture across genes: SNPs regulating genes with more/longer enhancers
likely, on average, have smaller β2s, due to the dispersion of cis-heritability for gene expression
across more regulatory variants. On the other hand, it is conceivable that the complexity of the reg-
ulatory architecture of a gene, in part, reflects its functional importance, e.g., developmental genes
are typically regulated by several enhancers elements [29]. Under these assumptions, it follows that
genes with more/longer enhancers, on average, have higher γ2s, and thus ρβ2,γ2 is plausibly negative.
Similar points are made by Wang and Goldstein [30], though our argument does not rely on the
assumption that multiple enhancer elements regulating the same gene are functionally redundant.
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Supplementary Fig. 17: Model results with varying correlation between effect sizes. Other
than the correlation between β and γ, all modeling and simulation details are the same as in Supplementary
Fig. 14. A) Joint distribution of negatively correlated β2 and γ2 values (left panel), simulated setting the
parameter ρ = −0.75 (see Supplementary Methods) and the corresponding discovery regions (right panel)
derived and presented similar to Supplementary Fig. 14A. B) Same as (A) but with positively correlated β2

and γ2 values, simulated setting the parameter ρ = 0.75. C) Discovery trends with increasing power under
different distribution of effect sizes and selection scenarios, derived and presented similar to Supplementary
Fig. 14B.
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In summary, the trends observed in data for GWAS and eQTL findings are consistent with our
model with selection (which has been extensively documented for complex traits) and/or with a
negative ρβ2,γ2 (which is biologically plausible as discussed above). Both likely contribute in reality.

3.3 Natural selection

In this part we evaluate two aspects of our model for the role of selection: (i) the mathematical
model for selection, and (ii) the strength of selection. Other key model parameters are kept fixed,
and identical to parameters used in Supplementary Fig. 14.

As we detailed earlier, motivated by previous evolutionary analyses [27,28], we modeled selection
to have a flattening effect on phenotypic variance with effect size (Extended Data Fig. 7), and we
used an asymptotic exponential form to describe the relationship E[2p(1 − p)β2γ2|β, γ] ∝ κ(1 −
e−β2γ2/κ). We show that our qualitative results are similar when we use other mathematical forms
with similar asymptotic behavior (Supplementary Fig. 18).
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Supplementary Fig. 18: Model results with varying mathematical form of selection’s flat-
tening effect. Modeling and simulation details are similar to Supplementary Fig. 14 for the case of a
phenotype under natural selection, but using different mathematical forms to describe the flattening effect
of selection, as illustrated in panel (A). The exact formulations are shown in panel (B). The κ values are
tuned to give an average reduction in contribution to phenotypic variance of ∼10% for all three formulations.
Discovery regions and trends shown in panels (B) and (C) are derived and presented similar to panels (A)
and (B) in Supplementary Fig. 14, respectively.
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Several studies have used a model previously referred to as the α model, to describe the relation-
ship between allele frequency and effect size [4, 31, 32]. Under this model E[β2γ2|p] ∝ [2p(1− p)]α.
This model is not based on a particular evolutionary model; rather it is based on mathematical
convenience as previously acknowledged [32]. Previous estimates gave α̂ < 0, indicating a negative
correlation between p and effect size as is consistent with the effect of selection [4, 31,32].

We investigated how our results change under the α model. The α model describes E[β2γ2|p]
whereas our model is based on the reverse expectation E[p|β2γ2]. Therefore, to incorporate the α

model, following a previous study [32], we approximated E[p|β2γ2] as follows: we first sampled β

and γ values from standard Normal distributions, and then multiplied those by a factor of [2p(1−
p)]α/4, where p values are drawn from an exponential distribution. We then numerically solved for
E[p|β2γ2]. See Supplementary Methods for details.

We experimented with negative α values on par with previous estimates and consistent with
the effect of negative selection [4, 31, 32]. These produced results similar to our flattening model
(Supplementary Fig. 19).
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Supplementary Fig. 19: Model results under the α model of selection. Modeling and simulation
details are similar to Supplementary Fig. 14 for the case of a phenotype under natural selection, but using the
α model to describe the relationship between phenotypic effect of a SNP and allele frequency as E[β2γ2|p] ∝
[2p(1− p)]α. We considered negative α values, on par with previous estimates, and consistent with the effect
of negative selection; a more negative α value corresponds to a stronger selection [4, 31, 32]. See the text
and Supplementary Methods for details on the implementation of the α model in our simulations. Discovery
regions and trends shown in panels (A) and (B) are derived and presented similar to panels (A) and (B) in
Supplementary Fig. 14, respectively.
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Next, we explored the effect of varying selection strength, which in our flattening model of
selection is achieved by varying κ. We tuned κ values based on the average per-SNP reduction in
contribution to phenotypic variance compared to the neutral scenario (i.e., no correlation between
p and effect sizes), i.e., E[2pselection(1−pselection)

2pneutral(1−pneutral)
]. As expected, the gap between GWAS and eQTL

variants grows with increasing selection strength, κ, (Supplementary Fig. 20), also consistent with
trends observed with decreasing α in the α model described above (Supplementary Fig. 19).

In summary, the qualitative effect of selection is robust to how selection is modeled: selection
always reduces the amount of overlap between GWAS and eQTL findings by "bending" the eQTL
discovery region down (as shown in Supplementary Fig. 14), skewing the discovered eQTLs away
from the functionally important genes. Note that although our selection model was motivated by
the effect of stabilizing selection on complex traits (which is considered the default mode of selection
on quantitative traits [33]), the consequence for variant discovery would be similar under negative
selection (e.g., as shown in Supplementary Fig. 19). That said, the exact shape and reduction in
overlap depends on the selection model and joint distribution of β and γ. See below for an additional
discussion on the challenges of quantitative analyses.
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Supplementary Fig. 20: Model results with increasing selection strength. Modeling and
simulation details are similar to Supplementary Fig. 14 for the case of a phenotype under natural selection,
but with varying strength of selection. Selection strength is determined by the κ parameter in our flattening
model formulated as E[2p(1− p)β2γ2|β, γ] ∝ κ(1− e−β2γ2/κ) and illustrated in panel (A). The κ values are
shown in panel (B), tuned to give ∼5%, ∼10%, or ∼15% reduction in the average contribution to phenotypic
variance across all causal SNPs relative to the neutral scenario; higher reduction corresponds to stronger
selection. Discovery regions and trends shown in panels (B) and (C) are derived and presented similar to
panels (A) and (B) in Supplementary Fig. 14, respectively.
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3.4 Limitations of the model

The above analyses show that although our qualitative results are generally robust, making quanti-
tative predictions is sensitive to the modeling and parameter choices. As an example, even under our
simple model, the mean effects of discovered variants vary by selection strength and the correlation
between β2 and γ2 effects (Supplementary Fig. 21). A detailed quantitative analysis requires an
estimation of the true joint distribution of selection coefficients, allele frequencies, and effect sizes,
β and γ. Selection coefficients and genic effects, γ2, are especially hard to estimate (e.g., see [5,34]).
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Supplementary Fig. 21: Sensitivity of quantitative results to model parameters. The mean
effect sizes of discovered variants as GWAS hits (blue) or eQTLs (red), with varying the strength of selection
(A) or varying the correlation between the SNP effect on gene expression, β2, and the gene effect on phe-
notype, γ2 (B), keeping the discovery power fixed at 15% in both assays. In each panel, except the changing
parameter, i.e., κ or the degree of flattening in panel (A) and ρ or the correlation between effect sizes in
panel (B), all other modeling and simulation details are the same as in Supplementary Fig. 14. Shape of the
points demonstrate the two model parameters. The dashed lines show the mean of all simulated causal SNPs.

Furthermore, the picture becomes complicated very quickly as one goes beyond a single gene,
single cell type, single phenotype model to a multi-gene, multi-cell type, multi-phenotype model.
Specifically, a given SNP can affect multiple genes (G), in multiple cell types or contexts (C), and
affect multiple phenotypes (P ). Therefore, in reality, the joint distribution of β2 and γ2 effects
needs to be quantified in a very high dimensional space (G × C × P ). Our model in its simplest
form should be viewed as a one dimensional representation of this high dimensional space.

For example, in our analysis of the eQTLGen data (Supplementary Fig. 12), we note that some
discovery trends with increasing association p-value (as a proxy for increasing study sample size),
notably with respect to the regulatory features of genes, are inconsistent with the predictions of our
single cell-type model. Specifically, the depletion of eQTLs at genes with longer enhancers is more
pronounced for weaker eQTLs. Explaining this observation in this data requires accounting for the
variability of blood-specific enhancer architecture across genes and blood cell types, as well as its
correlation with features influencing eQTL discovery, such as expression level, selective constraint,
cis-heritability of gene expression, etc. These detailed considerations are challenging, and beyond
the scope of this study.

Also note that while our model provides insight on how to conceptualize the effect of natural
selection on variant discovery, understanding how selection affects specific GWAS or eQTL assays is
complicated. This is mainly because trait-variants are usually pleiotropic [35]. Thus, the selective
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constraint on a given SNP or gene is determined by its net effect in a multi-dimensional trait space.
Also, considering that many complex traits are under selection [4,27,28,31], the contribution of any
single trait to fitness is likely small. As a result, there is likely no one-to-one correspondence between
a SNP’s or gene’s effect on a single trait and selection. Consistent with this picture, recent work
suggests that the distribution of selection coefficients for GWAS variants, as well as the contribution
of high pLI genes to trait heritability from common variants, is similar across a diverse range of
traits [5, 36].

Regardless, our model provides a useful framework to conceptualize current findings (and lack
of findings) in GWAS and eQTL assays, and to guide future quantitative efforts in characterizing
and estimating key biological parameters.
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4 Model extensions

In this section we explore additional qualitative properties of our model for variant discovery and
provide insight about more complicated scenarios than the single cell type, single phenotype model
presented in the main text.

4.1 Dependency on sample size

The discovery regions in main Fig. 6 contain variants that explain variance in expression levels (for
eQTLs) or phenotype (for GWAS variants) more than the study-dependent discovery thresholds,
c∗:

2p(1− p)β2 > c∗eQTL [for eQTLs]

2p(1− p)β2γ2 > c∗GWAS [for GWAS].

As detailed in the Online Methods section, c∗ ∝ 1/n, where n is the study sample size. For
visualization purposes we set c∗GWAS and c∗eQTL values such that the discovery power in both assays
is 15% under our modeling assumptions, on par with rough estimates of discovery power at current
samples sizes (see section Power considerations in GWAS and eQTL mapping). Taking this point
as reference, c∗ref , we studied how discovery regions change as sample sizes increase by adjusting c∗:
a k-fold increase in study sample size corresponds to setting c∗ = c∗ref/k.

For both GWAS and eQTL assays, the discovery regions expand with increasing sample size
towards covering the whole parameter space (Supplementary Fig. 22A). Also in each assay, discovery
lines remain qualitatively similar in shape across discovery thresholds (Supplementary Fig. 22A).
However, the rate of increasing power with sample size is slower for GWAS (Supplementary Fig.
22B), considering that compared to eQTL effect sizes, β2, GWAS effect sizes, β2γ2, depend on both
β2 and γ2, and thus are relatively more variable across SNPs. Importantly, the discovered SNPs in
the two assays are systematically different at any sample size, and the bias against functional genes
in eQTL assays remains, though becomes smaller with sample size (Supplementary Fig. 22C).

We emphasize that the main point of this analysis is to demonstrate qualitative (and not quanti-
tative) trends, for two main reasons: (i) The shifts in the position of discovery lines depend on c∗ref .
In other words, predicting the number of new discoveries with increasing sample size in practice
depends on the discovery power at current sample sizes. Precise estimation of power at current
sample sizes for each assay is not straightforward and is beyond the scope of this study. That said,
we reason that, at current sample sizes, the discovery power in both GWAS and eQTL studies is
on the low end (see section Power considerations in GWAS and eQTL mapping). (ii) Quantitating
the discovery gains with samples size is sensitive to modeling choices and parameters, and we refer
to our discussion in the previous section on the challenges of deriving quantitative results.

It is noteworthy that typical GWAS sample sizes (∼500K) are orders of magnitude larger than
typical sample sizes of eQTL studies (∼500), and thus the range of fold increase in sample sizes
considered here are perhaps more practical for eQTL studies, e.g., the eQTLGen study of blood
eQTLs has sample size of ∼32K [17], about 64 times larger than GTEx whole blood sample size [15].
That said, translating sample size increases in multi-cell type, whole-tissue assays to the sample size
parameter in our single cell type model is not straightforward. This is for two reasons: one, different
cell types have different abundance in tissues; more abundant cell types contribute more to the total
number of new eQTL discoveries with sample size. Two, cell types likely vary by their contribution
to phenotypes, i.e., the distribution of genic effects, γ2, varies by cell type. Therefore, different cell
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types fall on different discovery trajectories as shown in Supplementary Fig. 22. In the next section
we further explore discovery trends in a multi-cell type scenario.
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Supplementary Fig. 22: Model results with increasing sample size. All modeling and simulation
details are the same as the case of the phenotype under selection in Supplementary Fig. 14. A) Discovery
lines for eQTLs (red, left panel) and GWAS hits (blue, right panel). The discovery lines corresponding to our
reference point (i.e., fold change of 1 as indicated in the panel legends) are derived by setting the discovery
thresholds c∗ref such that 15% of the simulated causal SNPs are discovered in either assay, as described in
Supplementary Fig. 14A (see Online Methods for details). Discovery lines corresponding to k fold larger
study samples are achieved by setting c∗ = c∗ref/k. B) The fraction of all causal SNPs discovered as GWAS
hits or eQTLs with fold increase in study sample size relative to the reference sample. C) Points show
the mean expression effect (mean β2 values, circle) and the mean gene effect (mean γ2 values, triangle) of
variants discovered as GWAS hits or eQTLs with fold increase in study sample size relative to the reference
sample. The dashed line shows the mean values for all simulated causal SNPs.

4.2 Multi-cell type model

In the main text, we have described the simplest case where there is only a single relevant cell
type. But in practice, most current eQTL studies sample across mixtures of cell types (e.g., whole
tissues), and/or environmental contexts. More fundamentally, genetic effects on a phenotype may
be mediated by gene expression in multiple regulatory contexts (cell types, developmental stages,
environmental stimuli, etc.). To explore these scenarios, Supplementary Fig. 23 outlines a simple
model of GWAS and eQTL mapping in a bulk tissue context. We derive a one-dimensional repre-
sentation of this scenario in order to use the insights gained from our single-context model discussed
in the main text (Fig. 6).
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In this representation, βagg denotes an aggregate effect of a genetic variant on expression across
contexts, and γagg denotes an aggregate effect of gene expression levels across contexts on the
phenotype (Supplementary Fig. 23A). We define βagg =

∑
cwcβc, as the weighted sum of effects

over all causal contexts, where βc denotes the genetic effect on expression in context c with the
weighting wc. As an example, considering a situation where a gene’s expression in a tissue influences
a phenotype, βc represents the effect in cell type c, w the relative contribution of different cell types
to the overall tissue-level mRNA levels, and βagg the effect estimate in a bulk assay of the causal
tissue.

We define γagg =
∑

c wcβcγc∑
c wcβc

, where γc denotes the effect of a unit change in target gene’s expres-
sion in context c on the phenotype. The rationale for this definition is such that, similar to our
single context model, the quantity βaggγagg gives the net effect of the genetic variant on phenotype.
For a given variant, the interpretation of γagg is the mean genic effect across contexts weighted by
the effect of the variant on gene expression. For example, if a variant is active in a single context c,
γagg is γc, and if the variant has the same effect on expression across all contexts γagg is

∑
cwcγc.
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Supplementary Fig. 23: A model for variant discovery across multiple contexts. A) One-
dimensional representation of the pathway from genotype to phenotype mediated by gene expression across
multiple contexts (e.g., cell types in a tissue), by defining parameters βagg and γagg. B) Variant discovery
in the space defined by βagg and γagg for a phenotype under selection; same as in main Fig. 6B. Shading
colors represent parameter space for the discovery of GWAS hit only (blue), eQTL only (red), and both
types (purple). C) Schematic of variant discovery across multiple contexts mapped to regulatory domains
(represented by orange rectangles) for two genes at different ends of the phenotypic importance axis.
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Similar to the our analysis in main Fig. 6, we can gain insight into the GWAS and eQTL
discovery process by considering variants in terms of βagg and γagg (Supplementary Fig. 23B). GWAS
will tend to detect variants if βaggγagg is large enough, and this can occur through a combination of
large expression effects and/or large phenotypic effects. But eQTL mapping will be most powerful
for detecting large – shared – expression effects, and thus the two types of assays may have limited
overlap. Supplementary Fig. 23C illustrates how this may play out for different variants: GWAS hits
will be skewed towards functionally important genes and highly contributing contexts. Crucially,
eQTLs will be skewed towards unimportant genes; meanwhile, eQTLs discovered at important genes
will be skewed toward low contributing contexts. Thus, we may even find context-specific eQTLs
for the "right" genes but at the "wrong" variants in the "wrong" contexts.

Also, for a given variant, the role of the degree of sharing of the expression effects across multiple
contexts is analogous to the role of distance to TSS in the single context model. In this view, using
the result that discovered eQTLs are expected to be more TSS-proximal than GWAS hits, eQTLs
are expected to be more shared across contexts, or on the flip side, GWAS hits are expected to be
more context-specific than eQTLs.

We expand on these intuitions using simulations of a multi-cell type scenario, where the causal
context is a tissue composed of three different cell types (Supplementary Fig. 24A). We considered a
cellular composition of ω = (ω1, ω2, ω3) = (0.05, 0.2, 0.75), and modeled genic effect sizes across cell
types with independent Normal distributions γc ∼ N(0, σc), setting (σ1, σ2, σ3) = (4, 2, 1) exploring
a scenario where less abundant cell types are more trait-relevant (Supplementary Fig. 24B). We
set 10% of regulatory effects to be shared across cell types (Supplementary Fig. 24C), and the
expression effects of these shared variants to be correlated across cell types: β ∼ N(0,Σ), setting
Σi,j = 0.75 for non-diagonal and 1 for diagonal elements. The remaining 90% of variants are set to
be cell type-specific, equally distributed across cell types (Supplementary Fig. 24C), with expression
effect βc ∼ N(0, 1) in the relevant cell type, and 0 in other cell types.

We investigated what types of variants are discovered in GWAS and eQTL assays in this scenario.
To this end, in simulations we computed βagg and γagg as described above, and used these in our
single cell type framework to model the effect of natural selection. For each variant we defined a
weighted genic effect size γ̄ =

∑
cwcIcγc, where Ic is an indicator for the activity of SNP in cell type

c. The interpretation of γ̄ is the net change in phenotype with one unit change in the expression
levels of a variant’s target gene across all cells in which the variant is active. [Note that γ̄ is different
from γagg. The motivation to define a new parameter is that γagg is different for different variants as
it depends on the variant’s effects on expression, as such when comparing different genes, one needs
a variant-independent measure]. We find that across all types of regulatory variants, genes linked
with GWAS hits have higher γ̄ than eQTLs active in the same regulatory contexts (Supplementary
Fig. 24D). Also, compared to GWAS variants, eQTLs are more enriched in shared variants and
depleted of cell type-specific variants active in the high contributing cell type (Supplementary Fig.
24E).
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Supplementary Fig. 24: Discovery trends in a multi-cell type simulation scenario. A scenario
whereby a mixture of cell types, e.g., in a causal tissue, affect a single phenotype. A) We considered three cell
types: cell type 1 (red), cell type 2 (blue), and cell type 3 (green). For each SNP we define six parameters: βc

as the SNP effect on gene expression in cell type c, and γc as the change in phenotype with one unit change
in the expression of the target gene in cell type c. B) We simulated a scenario where less abundant cell types
are more trait-relevant. Bar lengths (left panel) show cell type proportions (ω1, ω2, ω3) = (0.05, 0.2, 0.75).
Considering 20K genes and three cell types, we sampled 20K × 3 cell type-specific genic effects drawn from in-
dependent Normal distributions γc ∼ N(0, σc), setting (σ1, σ2, σ3) = (4, 2, 1) (right panel). C) We simulated
10 million SNPs, considering four categories of regulatory variants: shared SNPs across cell types (purple, 1
million SNPs), and three categories of cell type-specific effects (3 million SNPs with specific effects for each
cell type). See the text for expression effect, β, assignments per category. To link genes to SNPs, we sampled
10 million times from the 20K genes described in (B) (similar to our procedure in Supplementary Fig. 15).
D,E) For each SNP, we computed βagg and γagg, and used these in our single cell type, single phenotype
model under natural selection (described for Supplementary Fig. 14) to prioritize SNPs based on their signal
strength in GWAS or eQTL assays. We show properties of discovered SNPs with progressively including
variants with weaker signal in either assay, i.e., with increasing discovery power: (D) mean squared genic
effect across cell types, γ̄2 (see the text for definition), and (E) enrichment of SNPs with different regulatory
activities relative to all SNPs (black dashed line). Colors correspond to regulatory activity of SNPs.
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4.3 Multi-phenotype model

We now explore the scenario where a single cell type or context contributes to two traits (Supple-
mentary Fig. 25A), considering that pair-wise genetic correlation between complex traits is very
common [35]. We considered 50% of genes to have independent effects on the phenotypes, here-
after referred to as "trait-specific genes", with effects modeled as independent Normal distributions
γi ∼ N(0, 1), where i denotes the trait index. The remaining 50% of genes we set to have corre-
lated effects across traits, hereafter referred to as "shared genes": γ ∼ N(0,Σ), setting Σi,j = 0.75

for non-diagonal and 1 for diagonal elements. The gene expression effects were modeled as in the
previous simulations: β ∼ N(0, 1).

In reality, it is typically unknown which complex traits are under natural selection directly, or
indirectly by being correlated with other traits that are directly under selection. Considering this, we
selected one focal trait (trait 1 in our simulation example) for GWAS analysis, and considered three
natural selection scenarios, where the effect of selection is mediated by: (i) both traits (assuming
equal contribution from each trait), (ii) only the focal GWAS trait (trait 1), or (iii) only the
correlated trait not included in the GWAS study (trait 2). We modeled the effect of selection by
computing the net effect of variants on fitness as β2γ2net, defining γ2net =

∑
iwiγ

2
i , where w denotes

traits relative contributions to fitness.

In all these selection scenarios, the discovery trends in both GWAS and eQTL assays are quali-
tatively similar to our single trait model, i.e., when selection is directly acting on the GWAS trait
(Supplementary Fig. 25B,C). That said, in the eQTL assay, the degree of depletion of high effect
genes with respect to trait 1, i.e., γ21 , depends on the selection scenario (Supplementary Fig. 25B,
right panel). This is because the effect of selection is determined by the net effect in the phenotype
space, i.e., γ2net, but the relative contributions of γ1 and γ2 to γ2net varies by scenario. For example,
when trait 1 is directly under selection, all genes contribute to fitness proportional to γ21 . But when
trait 2 is directly under selection, selection on trait 1-specific effects is decoupled from γ21 .

There are also systematic differences between GWAS hits and eQTLs with respect to the contri-
bution of shared genes versus trait-specific genes (Supplementary Fig. 25D, left panel). Compared
to trait 1-specific genes, shared genes have higher γ2net on average when trait 2 is directly under
selection. In this case, selection is stronger on shared genes, which lowers the allele frequency of
their linked SNPs and disproportionately hampers their discovery in GWAS for trait 1. In contrast,
eQTL discovery is skewed towards variants at shared genes, particularly when selection is acting
on both traits (Supplementary Fig. 25D, right panel). This is because eQTL discovery is biased
towards genes with low γ2net, i.e., the mean of γ21 and γ22 , and the distribution of γ2net is more dense
at low values when the two parameters are correlated. When selection is acting on only one of the
traits, correlation with the other effectively neutral trait is irrelevant for gene discovery.
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Supplementary Fig. 25: Discovery trends in a multi-phenotype scenario. A) A scenario in
which a single cell type underlies two traits: trait 1, the focus of GWAS, and trait 2, partially correlated with
trait 1 but not included in GWAS. For each gene we define two trait-specific genic effects, γ1 and γ2. We
explore three selection scenarios where the effect on fitness is mediated by: only trait 1, only trait 2, or both
traits (equal contribution). B-D) We simulated 10 million SNPs linked with 20K genes with β, γ1 and γ2

values sampled as described in the text. To link genes to SNPs, we first sampled 20K × 2 trait-specific genic
effects, and then sampled 10 million times from the 20K genes (similar to our procedure in Supplementary
Fig. 15). For each SNP and selection scenario, we computed γ2

net (see the text for definition), and used
it along with β2 in our single cell type, single phenotype model (described for Supplementary Fig. 14) to
prioritize SNPs based on their signal strength in GWAS or eQTL assays. We show properties of discovered
SNPs with progressively including variants with weaker signal in either assay, i.e., with increasing discovery
power: (B) mean squared genic effect on trait 1, γ2

1 , (C) mean squared SNP effect on expression, β2, and (D)
fraction of discovered SNPs that are linked with genes with correlated effects on the two traits, i.e., shared
genes. Colors correspond to selection scenarios. Dashed lines show average properties of all causal SNPs.
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5 Colocalization of eQTLs and GWAS hits

Our main analyses are focused on the question: what types of variants are prioritized in GWAS
and eQTL assays? A different, but related question is: at what types of GWAS loci is there eQTL
signal, i.e., GWAS hits and eQTLs colocalize? This is most relevant when eQTL data is used to
help identify the target genes and relevant contexts of a given set of GWAS variants. In this section,
by combining data analysis and modeling, we show that our main conclusions are applicable to the
second question as well.

5.1 Insights from our model

We consider two approaches for joint evaluation of GWAS and eQTL signals: (i) for a given set of
GWAS hits, investigating which ones are also independently discovered as eQTLs (referred to as "co-
discovery" in the following), and (ii) integrating GWAS and eQTL signals across the genome without
significance testing in either assay. Transcriptome-wide association studies (TWAS) (e.g., [37–39]),
and most statistical approaches for testing for colocalization (e.g., [40]) can be viewed in terms of
the second approach. That said, some uses of these statistical methods involve a hybrid of the two
approaches, e.g., testing for colocalization only at GWAS loci or loci with some evidence for trait
association (e.g., [41]). Without loss of generality, we ignore the problem of LD confounding which
complicates distinguishing whether GWAS and eQTL signals are driven by the same causal SNP or
two different causal SNPs that are in LD, as it is orthogonal to the factors discussed here.

Intuitively, a colocalization signal is strongest when evidence for both GWAS and eQTL signals
is strong. Now, let’s consider a set of GWAS hits that explain similar amounts of phenotypic
variance, which can be represented by a contour line of β2γ2 = const. in the parameter space of our
1-D model (Supplementary Fig. 26A). For this set, colocalization evidence becomes stronger with
the strength of the eQTL signal, which according to our model is more likely at genes with high
β2 but low γ2 (Supplementary Fig. 26A). Therefore, in principle, prioritizing GWAS hits based on
colocalization evidence, although providing candidates for the downstream target genes, will bias
gene nomination towards less phenotypically relevant genes.

We used our simulation framework to demonstrate this intuition: we considered a set of GWAS
hits (top 15% of variants based on 2p(1 − p)β2γ2 values) for a phenotype under selection. We
then called eQTLs at different discovery power values, progressively including variants based on
2p(1 − p)β2 values, and computed the genic importance (i.e., average γ2) of variants that were
discovered in both assays (co-discovered SNPs). Our point of reference here is the set of all GWAS
variants (and not all causal variants as was in previous sections). Consistent with the discussion
above, relative to all GWAS hits, co-discovered SNPs are skewed towards high β2 variants at low
γ2 genes (Supplementary Fig. 26B).

We observed similar biases in our multi-cell type model (Supplementary Fig. 26C), now calling
variants as GWAS hits or eQTLs based on β2

agg and γ2agg values (see section Multi-cell type model).
For all regulatory contexts, i.e., cell type specific or shared regulatory variants across cell types,
SNPs co-discovered as GWAS hits and eQTLs have lower γ2 than the set of all GWAS hits in each
corresponding context (Supplementary Fig. 26C, left panel). Also, co-discovered SNPs are skewed
towards variants that are shared across cell types or are active in the least contributing cell types
(Supplementary Fig. 26C, right panel). These trends are consistent with eQTL discovery trends
shown in Supplementary Fig. 24.
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Supplementary Fig. 26: Model results for co-discovery of GWAS hits and eQTLs. GWAS
hits with and without eQTL evidence are systematically different. A) Variants with the same strength of
GWAS signal are shown by a blue contour line in the parameter space defined by β2 and γ2. The eQTL
signal and thus colocalization evidence is stronger at GWAS loci with higher β2 but lower γ2. B) The mean
properties of GWAS hits (at a fixed GWAS discovery power of 15%) that are also discovered as eQTLs in
our single cell type, single phenotype model, with progressively increasing the discovery power of the eQTL
study. For a given eQTL study power X, points show the mean expression effect (mean β2 values, circle)
and the mean gene effect (mean γ2 values, triangle) of the GWAS hits that are among the the top X% of
variants, ranked based on their strength of association signal in eQTL mapping, that is 2p(1 − p)β2. The
dashed line shows the mean effects for all GWAS hits. All modeling and simulations details are similar to
Supplementary Fig. 14. C) The properties of GWAS hits (at a fixed GWAS discovery power of 15%) that
are also discovered as eQTLs in our multi-cell type model, with progressively increasing the discovery power
of the eQTL study: mean squared genic effect across cell types, γ̄2 (see section Multi-cell type model for
definition) (left panel), and enrichment of SNPs with different regulatory activities relative to all GWAS hits
(right panel). All modeling and simulations details are similar to Supplementary Fig. 24. Colors correspond
to the regulatory context of GWAS hits. The dashed lines show the average properties of all GWAS hits.

Statistical approaches such as TWAS or colocalization tests integrate GWAS and eQTL signals
without significance testing in either assay as explored above. Based on the study by Hukku et
al. [42], on a single-variant level, these approaches can be viewed as testing for γjβj β̂iCov(gj , gi) ̸= 0

for variants i and j, where γjβj is the effect of variant j on the phenotype, β̂i is the effect estimate of
variant i on gene expression in the eQTL assay, and g denotes the genotypes at these loci. Ignoring
LD, that is assuming that at a given locus the GWAS and eQTL signals are driven by the same
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known variant, the strength of the colocalization signal at the putatively causal variant would be
[
√

2p(1− p)βγ][
√
2p(1− p)β̂], which in expectation, is equivalent to the geometric mean of GWAS

and eQTL signals.

These considerations are inexact and oversimplify the colocalization problem. Nevertheless, they
provide the intuition that ranking variants based on evidence for colocalization through integrating
GWAS with eQTL data, skews discoveries away from GWAS-like to more eQTL-like variants. We
illustrate this intuition using our simulation framework to compare GWAS and eQTL discovery
trends, with trends when variants are ranked by the average strength of GWAS and eQTL signals,
i.e., 2p(1− p)β2γ, as a proxy for colocalization signal, showing that features of colocalized variants
are in-between GWAS hits and eQTLs (Supplementary Fig. 27).
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Supplementary Fig. 27: Model results for integration of GWAS and eQTL signals. Features
of colocalized variants are in-between GWAS hits and eQTLs. All modeling and simulations details are
similar to Supplementary Fig. 14. For a given SNP, the colocalization signal is derived as 2p(1 − p)β2γ

which is the geometric mean of the signals in GWAS and eQTL assays, 2p(1 − p)β2γ2 and 2p(1 − p)β2,
respectively. See the text for details. A) Discovery lines for GWAS hits (blue), eQTLs (red), and variants
prioritized based on colocalization evidence (purple) at 5% (left) and 10% discovery power (right). B,C)
The properties of prioritized variants in GWAS (blue), eQTL assay (red), or based on colocalization signal
(purple), with progressively including variants with weaker signal in either approach, i.e., with increasing
power: (B) mean squared SNP effects on expression, β2, and (C) mean squared gene effects on phenotype,
γ2. The dashed lines show the mean values for all simulated SNPs.
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5.2 Colocalization of blood eQTLs and blood-related GWAS hits

As described in the analyses for Supplementary Figs. 1 and 2, out of the 44 complex traits we
included in our main analyses, we characterized 14 as blood or immune related based on enrichment
in myeloid/erythroid or lymphoid specific open chromatin regions [2] (see Supplementary Methods
for details). We focused on 10,980 unique GWAS hits across these 14 traits, and as a proxy for
colocalization, we investigated whether they are in LD (r2 > 0.8) with any eQTL discovered by
GTEx in whole blood [15], or in eQTLGen data [17]. We note that LD between GWAS and eQTL
variants does not necessarily imply that the same causal SNPs underlie GWAS and eQTL signals,
and so LD likely leads to some false ascertainment of colocalization events. That said, we find that
GWAS hits for these 14 traits are in LD with blood eQTLs more than control SNPs matched for
MAF, LD and gene density (Supplementary Fig. 28A). As with previous analyses of eQTLGen
data, we sliced these eQTLs into 10 groups based on the deciles of association p-values, mimicking
the progressive discovery of eQTLs with sample size, and to avoid pooling a large number of eQTLs
which could complicate the interpretations. Furthermore, a lack of LD between GWAS hits and
any eQTL in the data is a conservative indication of the absence or weakness of eQTL signal at the
GWAS loci. Interestingly, even when using the full eQTLGen data at a sample size of ∼32K, ∼27%

of GWAS hits are not in LD with any eQTL (Supplementary Fig. 28A).

We further investigated the properties of GWAS hits with colocalization (i.e., in LD with at
least one blood eQTL) versus GWAS hits without colocalization (i.e., not in LD with any blood
eQTL). Compared to GWAS hits with colocalization, GWAS hits without colocalization are near
genes that are more selectively constrained (Supplementary Fig. 28B), and lie at longer distances
to the TSS of their nearest gene (Supplementary Fig. 28C). These trends become more pronounced
with increasing power of the eQTL assay indicating that with growing eQTL sample sizes, GWAS
hits that remain undiscovered as eQTLs tend to be more TSS-distal and acting on more constrained
genes.

These results are consistent with our modeling arguments above, the eQTL discovery trends dis-
cussed in the main text, and recent experiments by McAfee et al. [43], who evaluated the regulatory
activity of schizophrenia GWAS variants in a massively parallel reporter assay (MPRA) performed
in primary human neural progenitors: one, most MPRA-positive variants (i.e., GWAS hits with ev-
idence for regulatory activity) do not overlap eQTLs discovered in adult or developing brain. Two,
MPRA-positive variants with and without eQTL support are systematically different with respect
to distance to TSSs and genic features of their target genes, in similar ways as described here.

We emphasize however, that although these results can be understood in light of our model,
our explanations for lack of colocalizations of GWAS loci with eQTLs are complementary to other
hypotheses, such as context-specificity of missing trait-related eQTLs [44]. For example, among the
∼27% GWAS hits for blood-related traits studied here that are not in LD with any yet discovered
blood eQTL, some are plausibly eQTLs that are activated upon stimulations that are absent from
eQTLGen. That said, the systematic differences between GWAS hits with and without eQTL
support, as shown in Supplementary Fig. 28B,C and by McAfee et al., are not readily explained
by other hypotheses proposed so far. Thus, as we do not and cannot rule out these alternative
explanations, we believe that the key factors we described in this work significantly contribute to
the colocalization problem.
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Supplementary Fig. 28: Properties of colocalized GWAS hits for blood or immune related
traits with blood eQTLs. Properties of 10,980 unique GWAS hits across 14 blood or immune related
traits with or without colocalization with eQTLs, defined as being in LD (r2 > 0.8) with any eQTL discovered
by GTEx in whole blood [15], or in eQTLGen data [17]. We divided eQTLGen eQTLs into 10 groups based
on the deciles of association p-values. A) Fraction of GWAS SNPs (dark blue) that colocalize with eQTLs,
compared to control SNPs (light blue) matched for MAF, LD and gene density (see Online Methods). B)
Points show logistic regression coefficient for pLI for predicting genes linked with GWAS hits with versus
without colocalization with eQTLs after adjusting for confounders. Results are plotted as regression coeffi-
cients ±2 standard errors. As proxy for GWAS target genes, we linked GWAS hits to their closest gene
that is expressed in blood. See Supplementary Methods for details. C) Box plot of the distance of GWAS
variants to the nearest TSS (of genes expressed in blood) by colocalization status. The lower and upper hinges
represent the 25th and 75th percentiles, respectively. Whiskers extend up to 1.5 times the interquartile range
from the minimum and maximum values. Data points beyond the whiskers are depicted individually, while
values greater than 500 Kb are excluded from the plot for clarity. The number of colocalized GWAS hits (out
of 10,980) per eQTL group are as follows: 2,974 for GTEx, and 2,019, 3,404, 4,421, 5,254, 5,939, 6,466,
6,961, 7,374, 7,707, and 8,018 for the eQTLGen groups shown.
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6 Supplementary methods

In this section we provide additional details relating to the analyses in this supplementary note,
complementing the methods described within the note. All methods relating to the main text are
described in the Online Methods.

SNP sets.

As we described in the Online Methods (see section SNP selection), 8,136,100 SNPs passed our
quality control (QC) measures. For most data sets analyzed in this paper, e.g., GWAS hits, or any
type of QTLs, our first QC step is extracting variants overlapping this set. We further processed
this SNP set removing variants (i) in LD with putatively protein-altering variants, (ii) more than
1Mb away from autosomal protein-coding genes, (iii) in the MHC region, yielding 6,971,256 SNPs
(Online Methods, section SNP selection). We focused on variants overlapping this set for most of
our analyses of GWAS hits and eQTLs, and further sampled control SNPs per study from this set.
In this supplementary note, for our analyses of exon QTLs and splicing QTLs, we removed filters
(i) and (iii) above, resulting in 7,776,878 SNPs.

GWAS data.

UK Biobank. In the main text, we analyzed GWAS data for 44 complex traits from the UK
Biobank (UKB). These traits were chosen through a trait selection pipeline as described in the
Online Methods. We expanded the list of traits for analysis in this note to include 1,083 traits,
removing the trait filtering criteria applied previously. This set includes the majority of traits
for which GWAS data as well as pairwise genetic correlations were released by the Neale lab [1].
We further removed traits with no obvious biological relevance such as "Day-of-week questionnaire
completion requested". We applied the same SNP selection quality control measures that we used
for the main 44 traits (see Online Methods) for these 1,083 traits, resulting in 83,401 GWAS hits.
We also divided the 44 traits used for our main analyses into 14 "blood or immune related" traits
(12,157 GWAS hits), and 30 other "non-blood or immune related" traits (9,962 GWAS hits), based
on GWAS variants enrichment in myeloid/erythroid or lymphoid specific open chromatin regions
(see Determination of blood or immune related traits below).

GWAS ATLAS. We downloaded the list of LD clumped lead GWAS variants provided by the GWAS
ATLAS [3] (file gwasATLAS_v20191115_riskloci.txt.gz, see URLs below). We overlapped this
SNP set with 8,136,100 SNPs that passed our quality control measures (see section SNP sets). We
focused on GWAS studies performed in European-descent individuals, labeled with "EUR" in the
file gwasATLAS_v20191115.txt. The data set may include multiple GWAS results for each unique
trait; for each trait we selected the GWAS study with the highest number of filtered lead GWAS
hits. We then formed three categories from the traits that were retained by these steps: (1) all
traits, (2) traits labeled with the term "disease" or "disorder", and (3) traits labeled with the
term "disease" in the file gwasATLAS_v20191115.txt. For each of these trait groups we preformed
two additional filtering steps to form three corresponding filtered sets: one, we conditioned on 558
GWAS studies analyzed by Watanabe et al., [3], and two, we pruned the trait list such that genetic
correlation, ρg, was < 0.5 for all trait pairs in the final list using the same procedure as described in
the Online Methods for the 44 complex traits in UKB, and using ρg values released by the GWAS
ATLAS (file gwasATLAS_v20191115_GC.txt). Following these steps, for each of the 6 trait groups,
we conditioned on 6,971,256 set of SNPs that we used in our analysis of GWAS data (see section
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SNP sets). The final trait/SNP sets are as follows: (1) "all traits": 1,488 traits, 39,932 GWAS hits,
(2) "diseases/disorders": 154 traits, 3,551 GWAS hits, (3) "diseases": 92 traits, 2,405 GWAS hits,
(4) "independent traits": 173 traits, 7,531 GWAS hits, (5) "independent diseases/disorders": 40
traits, 1,233 GWAS hits, (6) "independent diseases": 23 traits, 821 GWAS hits.

We further divided the list of 173 "independent traits" into five non-overlapping non-disease
categories. To this end, we first excluded all traits labeled with the terms "disease" or "disor-
der", and then grouped traits based on the "Domain" field provided by GWAS ATLAS in the file
gwasATLAS_v20191115.txt. We grouped domains "Cognitive", "Neurological", and "Psychiatric"
as "cognitive" (17 traits, 737 GWAS hits); domain "Reproduction" as "reproduction" (8 traits, 411
GWAS hits); domain "Immunological" as "immunological" (14 traits, 1,581 GWAS hits); domains
"Skeletal" and "Body Structures" as "physical" (6 traits, 1,018 GWAS hits); domain "Metabolic"
as "metabolic" (10 traits, 984 GWAS hits). We also relabeled traits "Educational attainment" and
"Birth weight" as "cognitive" and "reproduction", respectively.

SNP-gene links. We analyzed GWAS gene assignments from two independent studies: (1) We
downloaded SNP-gene links for GWAS hits for 113 complex traits predicted by the PoPS method
developed by Weeks et al., [8] (see URLs). We conditioned on 18,332 protein-coding autosomal
genes studied in this paper (see Online Methods, section Gene selection). For each trait-variant
pair, we selected the top gene with the highest rank based on the PoPS score, resulting in 25,252
SNP-gene links. (2) We downloaded gene assignment provided by Gazal et al., [7] for fine-mapped
GWAS hits for UKB traits (see URLs), based on their integration of earlier SNP-to-gene linking
strategies into a combined score (cS2G). Following Gazal et al., we conditioned on trait-variant pairs
with posterior inclusion probability (PIP) > 0.5. Also, similar to our procedure for PoPS genes, we
conditioned on the list of 18,332 protein-coding autosomal genes, resulting in 6,655 SNP-gene links
across 47 traits.

eQTL data.

eQTL Catalogue. We downloaded fine mapped credible sets for gene expression (ge) eQTLs in
105 studies processed by the eQTL catalogue [16] (*.purity_filtered.txt.gz files, see URLs).
We mapped the genomic coordinates to the hg19 assembly using LiftOver [45], and extracted the
overlap between eQTL variants and 8,136,100 SNPs that passed our quality control measures (see
section SNP sets). For each study, we kept the eQTL SNP with the highest PIP in each credible
set. We then overlapped these top eQTLs to the 6,971,256 SNPs that we used in our analysis of
GWAS and eQTL data (see section SNP sets), as well as eQTLs for eGenes that were among the
list of 18,332 protein-coding autosomal genes studied in this paper (see Online Methods, section
Gene selection).

eQTLGen. We downloaded significant cis-eQTLs ascertained by the eQTLGen consortium [17] (see
URLs). We processed these eQTLs similar to the GTEx eQTLs (see Online Methods). Specifically,
we focused on eQTLs for eGenes that were among the list of 18,332 protein-coding autosomal genes
studied in this paper (see Online Methods, section Gene selection). We first extracted eQTLs
overlapping 8,136,100 SNPs that passed our quality control measures (see section SNP sets). Then,
for each eGene, we performed LD-based clumping to ascertain lead eQTLs (as described in the
Online Methods, section SNP selection), resulting in 249,929 eQTLs for 12,659 eGenes. These
numbers were used for our discovery power analysis in section Power considerations in GWAS and
eQTL mapping. For other analyses of eQTLGen eQTLs, we focused on 230,032 lead eQTLs that
were among the 6,971,256 SNPs that we used in our analysis of GWAS and eQTL data (see section
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SNP sets). In a subset of analyses, we further divided these 230,032 lead eQTLs into 10 groups
based on deciles of association p-values.

GTEx. All methods relating to our analyses of GTEx data are described in the Online Methods.
Only for our discovery power analysis in section Power considerations in GWAS and eQTL mapping,
we reprocessed GTEx eQTLs for whole blood [15], matching our process for eQTLGen data for
this purpose. To this end, we focused on eQTLs for eGenes that were among the list of 18,332
protein-coding autosomal genes (see Online Methods, section Gene selection). We extracted eQTLs
overlapping 8,136,100 SNPs that passed our quality control measures (see section SNP sets). Then,
for each eGene, we performed LD-based clumping to ascertain lead eQTLs (as described in the
Online Methods, section SNP selection), resulting in 28,645 eQTLs for 7,953 eGenes.

Other QTL data.

Exon QTLs. We downloaded fine mapped credible sets for exon expression QTLs in 49 GTEx tissues
processed by the eQTL catalogue [16] (*.purity_filtered.txt.gz files, see URLs). We processed
these QTLs using a procedure similar to what we used for gene expression eQTLs from the eQTL
catalogue described above. The only difference is that we kept lead QTLs overlapping the 7,776,878
SNPs (described in section SNP sets), and not the 6,971,256 SNPs used for gene expression eQTLs.
This pipeline resulted in 1,088,880 exon QTLs (median 18,851 QTLs per tissue).

Splicing QTLs. We processed splicing QTLs (sQTLs) for 23 tissues analyzed by GTEx v8 [15],
following the same procedures as with our analysis of GTEx eQTLs (see Online Methods, section
eQTL data). We extracted sQTLs overlapping 8,136,100 SNPs that passed our quality control
measures (see section SNP sets), focusing on sGenes (genes linked with sQTLs) that were among
the list of 18,332 protein-coding autosomal genes studied in this paper (see Online Methods, section
Gene selection). For each sGene, we performed LD-based clumping to ascertain lead sQTLs (as
described in the Online Methods, section SNP selection). We kept lead sQTLs that were among
the 7,776,878 SNPs described above (see section SNP sets). This pipeline resulted in 67,250 sQTLs
(median 2,600 sQTLs per tissue).

Interaction eQTLs. We processed cell type interaction eQTL data for 43 tissue-cell type pairs
provided by GTEx v8 [18], as described above for GTEx sQTLs, resulting in 530,819 ieQTLs
(median 12,492 ieQTLs per tissue-cell type pair).

Methylation QTLs. We analyzed DNA methylation QTLs (meQTLs) in peripheral blood ascertained
by Hawe et al., [19] (see URLs). We focused on 336,732 tested CpG sites (file cpgs2include.RData),
64,478 of which were linked to at least one meQTL in a conditional analysis to identify independent
meQTLs linked with CpG sites (Supplementary Table 8 in Hawe et al.). As a proxy for the CpG
sites (and by association meQTLs) target genes, we linked all sites to their closest gene from the
18,332 protein-coding autosomal genes studied in this paper (see Online Methods, section Gene
selection). We then compared the properties of genes linked with 64,478 CpG sites with meQTLs
and 272,254 without meQTLs (see Gene comparison analysis using logistic regression below).

Gene expression levels.

For some analyses, we used the data for tissue specific gene expression levels in GTEx v8 tissues.
To this end, we extracted median TPM values per gene across GTEx participants as provided by
GTEx (file GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz).
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Determination of blood or immune related traits.

For our analyses in Supplementary Figs. 1 and 28, we divided the 44 complex traits analyzed in the
main text into two groups: "blood or immune related" and "not blood or immune related". To this
end, we downloaded DNase I Hypersensitive Sites (DHSs) maps created as part of the ENCODE 3
project [2] (see URLs), focusing on regions determined to be specific to myeloid/erythroid or lym-
phoid components by Meuleman et al., [2]. Similar to other regulatory regions we analyzed from
ENCODE 3, we mapped these DHS regions to the hg19 assembly using LiftOver [45]. We then
computed enrichment of GWAS hits in these regions for the 44 traits relative to their correspond-
ing control SNPs (see Online Methods for the definition of GWAS control SNPs and enrichment
computation), and labeled the top traits with significant enrichment after Bonferroni correction (14
traits with enrichment Z score > 3.45, corresponding to p-value < 0.05/88) as "blood or immune
related".

Gene comparison analysis using logistic regression.

For a number of analyses investigating the genic features linked with a set of SNPs (e.g., GWAS
hits, eQTLs, other QTLs, etc.), we used a logistic regression framework similar to what we described
in the Online Methods. Each SNP set is linked to genes through different strategies as described for
each analysis in the text, e.g., eQTLs to eGenes, or random SNPs to genes with the nearest TSS.

In this regression framework, we first constructed indicator variables for a SNP set of interest
(labeled 1s) versus a set of SNPs chosen for comparison or as control (labeled 0s). These comparisons
included: GWAS hits vs. random SNPs, eQTLs vs. random SNPs, GWAS hits with vs. without
eQTL colocalization, and other QTLs vs. corresponding control sets for each QTL type (see section
Other QTLs). We chose random/control SNP sets based on the analysis or QTL type as well as
computational efficiency. For GWAS hits and eQTLs, the set included 100K SNPs sampled from
the set of 6,971,256 SNPs (see section SNP sets). For ieQTLs we sampled 20K SNPs at random
from the same set. For exon and splicing QTLs we randomly sampled 100K and 20K, respectively,
from the set of 7,776,879 SNPs (see SNP sets above).

We then used logistic regression models to predict these indicator variables using the genic
features of interest (e.g., pLI score, TF status, etc.), one feature at a time (with the exception of
the two enhancer features that were used in a joint model). See Online Methods, section Gene
annotations for details on features. Genic feature values were normalized. For connectedness in
gene co-expression or protein-protein interaction (PPI) networks we used as predictors the rank
of genes based on the deciles of connectedness scores (described in Online Methods, section Gene
annotations). We also defined a gene annotation "GO terms count" as the total number of broady
unrelated Gene Ontology (GO) terms a given gene contributes to (see Online Methods, section
Selection of broadly unrelated GO annotations).

We included the following covariates in the regression models: MAF, LD score, gene density,
absolute distance to nearest TSS, total gene length, total length of gene coding sequence, as well as
dummy variables for 20 quantiles of MAF, LD score, gene density, and absolute distance to nearest
TSS. See Online Methods, sections Gene annotations and SNP annotations for details. In a subset
of regression models for GTEx and eQTLGen eQTLs (Supplementary Figs. 9 and 12B), as described
in the note, we adjusted for tissue specific expression levels. To this end, we also included TPM
values in the corresponding tissues in GTEx (see Gene expression levels above), as well as dummy
variables for 20 quantiles of the TPM values as covariates. For the comparison of CpG sites with
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vs. without meQTLs (Supplementary Fig. 13D), we did not include MAF and LD as covariates
(considering that CpG sites may not be polymorphic, and SNP features may not be defined), and
also re-computed gene density values around the CpG sites as the number of protein-coding genes
within a 1Mb window.

For the analysis of different SNP-to-gene linking strategies in GWAS (Supplementary Fig. 4),
we performed the regression on GWAS gene sets vs. other non-GWAS genes, instead of GWAS
SNP sets vs. random SNPs, mainly because the considered SNP-to-gene linking methods cannot be
applied to random SNPs (unlike the closest gene approach we used in our main analyses). To this
end, for each trait, we predicted GWAS genes (labeled 1s) versus other non-GWAS genes among
the set of 18,332 protein-coding autosomal genes (labeled 0s), including total gene length, total
length of gene coding sequence, and gene density (re-computed as the number of protein-coding
genes within 1Mb windows around TSSs) as covariates.

All regression analyses were performed using the glm function in R. We report the regression
coefficients and standard errors, or the corresponding Z values as output by glm, unless stated
otherwise.

Colocalization analysis.

In our analysis for Supplementary Fig. 28, we investigated the colocalization of GWAS hits for
14 blood or immune-related traits described above, with blood eQTLs. To this end, we focused
on 10,980 unique GWAS hits across these 14 traits. As a proxy for colocalization, we investigated
whether these GWAS hits, or any of the SNPs in LD with them (r2 > 0.8 among the 13.7 million
quality controlled SNPs in UK Biobank, see Online Methods, section SNP selection), are among
the eQTLs detected in GTEx whole blood, or the eQTLGen study. To be conservative, we included
all eQTLs ascertained by these studies, i.e., without any of the processing done for our analyses
of these eQTLs described above (e.g., no LD-clumping): 1,323,859 and 7,455,305 total eQTLs in
GTEx whole blood and eQTLGen, respectively, were included. As a proxy for target genes, we
linked the GWAS hits to their closest gene (with the closest TSS) that is expressed in blood (from
genes with median TPM> 0 in GTEx whole blood). We then investigated the genic properties of
GWAS hits with and without colocalization with eQTLs using our logistic regression framework
described above.

Simulations.

We performed simulations under our model for variant discovery in GWAS and eQTL assays explor-
ing various scenarios and parameter choices (sections Robustness of the model and Model extensions).
Here we provide additional details on a few components of these simulations. All other procedures
are described in Online Methods (section Modeling variant discovery) and within the supplementary
note.

Baseline simulation parameters. In Supplementary Fig. 14 we present our key predictions under
our baseline assumptions, serving as a point of comparison for simulations under other scenarios and
different modeling parameters. We considered 10 million independent SNPs, and sampled 10 million
β and γ values from independent standard Normal distributions. To mimic variant discovery, in
the evolutionary neutral scenario, we ranked variants based on β2 for eQTL mapping, and based
on β2γ2 values for GWAS mapping. When the phenotype is under natural selection, we ranked
variants based on Vpβ

2 for eQTL mapping, and based on Vpβ
2γ2 values, where Vp = 2p(1−p) is the
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scaling factor accounting for the reduction in allele frequency and thus phenotypic variance due to
selection. Motivated by a flattening model of selection [27,28], for each SNP with effects (β, γ), we
set Vp = κ(1 − e−β2γ2/κ)β−2γ−2. For baseline simulations, we set κ = 2.986. See Online Methods
(section Modeling variant discovery) for more details.

Correlation between β2 and γ2. In a subset of simulations we explored how our results change with
covariance between β2 and γ2. To this end, we first generated random variables (uβ, uγ) ∼ N(0,Σ),
setting Σi,j = ρ for non-diagonal and 1 for diagonal elements, where ρ is our tuning parameter to
induce correlation between β2 and γ2. We then drew β and γ values from independent standard
Normal distributions (our baseline parameters), and then rearranged and paired the vectors of β
and γ to match the ranks of uβ and uγ , respectively. We then computed the correlation induced
between β2 and γ2 and reported that on the plots shown.

Strength of selection. As described in the Online Methods, we model selection to have a flattening
effect on variants’ contribution to phenotypic variance, using an asymptotic exponential form to
describe the relationship E[Vpβ

2γ2|β, γ] ∝ κ(1− e−β2γ2/κ). See Online Methods (section Modeling
variant discovery) for more details. In this formulation, the parameter κ determines the strength
of flattening or selection. That said, the expected degree of reduction in phenotypic variance across
all variants compared to the neutral scenario depends also on the distributions of β and γ. In a
subset of simulations we vary distributions of β and γ. With the exception of simulations where
we explore the effect of varying the strength of selection (Supplementary Figs. 20 and 21), to keep
the net effect of selection fixed, we tuned the κ parameter such that E[Vp] is reduced by ∼ 10%

compared to the neutral scenario.

The α model. We also explored our model predictions under the model, termed the α model,
which describes the relationship between allele frequency and effect size as E[β2γ2|p] ∝ [2p(1− p)]α

[4, 31, 32]. In our simulations, we determine variant discovery based on the reveres expectation
E[p|β2γ2]. To incorporate the α model in our simulations, we approximated E[p|β2γ2] as follows:
we first sampled β and γ values from standard Normal distributions, and then multiplied those
by a factor of [2p(1 − p)]α/4, where p values are drawn from a truncated exponential distribution
with mean 0.05 within the range of [0.001, 0.5]. We then numerically solved for E[p|β2γ2] using a
piecewise linear regression to predict p from β2γ2 using the function segmented in R [46].

URLs.

GWAS ATLAS: https://atlas.ctglab.nl

PoPS: https://www.finucanelab.org/data

cS2G: https://alkesgroup.broadinstitute.org/cS2G/finemapping_cS2G_UKBB

eQTL catalogue: https://www.ebi.ac.uk/eqtl/

eQTLGen consortium: https://www.eqtlgen.org

GTEx data: https://gtexportal.org/home/datasets

Methylation QTLs by Hawe et al.,: https://zenodo.org/record/5196216#.Y6Y6Mi-B28V

ENCODE DHS regions: https://www.encodeproject.org/annotations/ENCSR857UZV/
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Supplementary data.

Data generated by or processed for the analyses in this note can be found on Zenodo with the DOI
10.5281/zenodo.6618073. Also see Online Methods, section Data availability.
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