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ScienceDirect
Studying how diverse human populations are related is of

historical and anthropological interest, in addition to providing a

realistic null model for testing for signatures of natural selection

or disease associations. Furthermore, understanding the

demographic histories of other species is playing an

increasingly important role in conservation genetics. A number

of statistical methods have been developed to infer population

demographic histories using whole-genome sequence data,

with recent advances focusing on allowing for more flexible

modeling choices, scaling to larger data sets, and increasing

statistical power. Here we review coalescent hidden Markov

models, a powerful class of population genetic inference

methods that can utilize linkage disequilibrium information

effectively. We highlight recent advances, give advice for

practitioners, point out potential pitfalls, and present possible

future research directions.

Addresses
1Computational Biology Graduate Group, University of California,

Berkeley, United States
2Department of Ecology and Evolution, University of Chicago, United

States
3Department of Statistics, University of Michigan, United States
4Computer Science Division and Department of Statistics, University of

California, Berkeley, United States
5Chan Zuckerberg Biohub, San Francisco, United States

Corresponding author: Song, Yun S (yss@berkeley.edu)

Current Opinion in Genetics & Development 2018, 53:70–76

This review comes from a themed issue on Genetics of human

origins

Edited by Brenna M Henn and Lluis Quintana-Murci

For a complete overview see the Issue and the Editorial

Available online 26th July 2018

https://doi.org/10.1016/j.gde.2018.07.002

0959-437X/ã 2018 Elsevier Ltd. All rights reserved.

Introduction
Using genetic data to understand the history of a popu-

lation has been a long-standing goal of population genet-

ics [1], and the emergence of massive data sets with

individuals from many populations [2,3,4��], often

including ancient samples [5], have enabled the infer-

ence of increasingly realistic models of the genetic
Current Opinion in Genetics & Development 2018, 53:70–76 
history of human populations [6–8]. The progress in

other species is no less impressive, with demographic

models inferred for dogs [9], horses, [10], pigs [11], and

many others.

These demographic models are frequently of interest in

their own right for historical or anthropological reasons,

and failing to account for demographic history when

performing tests of neutrality [12], disease associations,

[13], or recombination rate inference [14,15] can lead to

spurious results. Demographic models also play an impor-

tant role in conservation genetics, informing breeding

strategies for maintaining genetic diversity in endangered

populations [16].

Yet, inferring complex demographic models — often

including multiple populations with continuous migra-

tion, admixture events, and changes in effective popula-

tion size — is challenging both statistically and computa-

tionally, and numerous methods have been developed to

address this problem. Even under neutral evolution,

computing the likelihood of observing a set of genotypes

given a demographic model is computationally and ana-

lytically intractable. Hence, demographic inference

methods must make simplifying approximations and

generally fall into three classes: those based on allele

frequencies; those based on identity-by-descent (IBD) or

identity-by-state (IBS); and coalescent hidden Markov

models (coalescent-HMMs).

Allele frequency-based methods use the multipopulation

sample frequency spectrum (SFS) to infer either paramet-

ric [17–19,20�,21�] or non-parametric [22] models. For

computational purposes, these methods assume that all

loci are independent, an assumption violated by physi-

cally-linked loci, and thus ignore the rich information

contained in such linkage (although [23] relaxes this to

allow pairwise dependencies). Yet, these methods are

very fast, with recent methods scaling to data sets with

hundreds of individuals from tens of populations [21�],
making them ideal for quickly exploring many potential

models (e.g. testing models with different number of

admixture events). Nevertheless, there are concerns

about statistical identifiability ([24], but see [25]), power

[26,27�], and stability [28].

IBD-based and IBS-based methods use patterns of pair-

wise haplotype sharing to infer demographic models,

matching the distribution of observed IBD or IBS tract
www.sciencedirect.com
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lengths to the distribution expected under the inferred

demographic model. While IBD-based methods, such as

[29–31], can be powerful — especially for learning about

the recent past — they rely on having access to unob-

served IBD tracts. Many methods have been developed

for inferring IBD tracts [32,33], but these rely either

explicitly or implicitly on the unknown demographic

history of the samples, resulting in a chicken/egg prob-

lem. The effect of these assumptions on IBD-based

methods has not been thoroughly explored, although

see [34]. To sidestep this issue, [35] works directly with

IBS tracts, a promising direction for further methodologi-

cal development.

The focus of this review is the final class of methods:

coalescent-HMMs. Below, we provide a historical over-

view of coalescent-HMMs; explore recent advances; dis-

cuss caveats, pitfalls, and best practices for applying

coalescent-HMMs to data; and conclude with open pro-

blems and promising future research directions.

A brief history of coalescent-HMMs
Coalescent-HMMs can trace back to the seminal work of

Wiuf and Hein [36]. The coalescent — a stochastic model

of the genealogy of a sample of homologous chromo-

somes — was first developed for a single non-recombin-

ing locus [37] and then extended to incorporate recombi-

nation [38]. The coalescent had been thought of as a

process through time, but Wiuf and Hein [36] formulated

it as a process along the genome. This sequential coales-

cent is very complex and non-Markovian (the genealogy

at a locus depends on the genealogies at all previous loci),

but simple, yet highly accurate, Markovian approxima-

tions were subsequently proposed (the sequentially Mar-
kovian coalescent; SMC) [39–42].

Under the SMC, observed sequence data are modelled in

a hidden Markov model (HMM) [43] framework by

treating the genealogy of the sampled individuals at a

given locus as an unobserved, latent variable. Because the

demographic model impacts the distribution of genealo-

gies (e.g. without migration, samples from different popu-

lations cannot have a common ancestor more recent than

the divergence of those populations) and the observed

sequence data are directly dependent on the underlying

genealogy, coalescent-HMM methods can be extremely

powerful. Furthermore, the HMM framework integrates

over all possible genealogies when inferring demographic

models — even if there is substantial uncertainty about

the genealogy of a given sample, the set of genealogies

likely to have given rise to that sample is still informative

about its demographic history.

In principle, the HMM framework enables efficient

inference of demographic parameters, but there are a

number of complications. First, except for rare special

cases (e.g. Kalman Filters [44] and iHMMs [45]), HMM
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algorithms require a finite state space for the latent

variables; this is problematic in the coalescent-HMM

case since the branch lengths of the genealogy at a given

locus are continuous and can take an uncountably infinite

number of values. All coalescent-HMMs avoid this issue

by discretizing time. Having a finite state space is not

sufficient for efficient inference, however, as the number

of tree topologies grows super-exponentially in the sam-

ple size, making the full coalescent-HMM impractical for

all but the smallest sample sizes. The menagerie of

coalescent-HMM methods then arises by making differ-

ent approximations to this idealized coalescent-HMM:

instead of tracking the entire genealogy of the sample as a

latent variable, these methods only track some features or

subset of the genealogy.

Briefly, CoalHMM [46,47], developed to study different

species, tracks only the topology of the genealogy and in

which branch of the species tree the lineages coalesce.

CoalHMM cannot scale to more than a few species.

PSMC [48] can only be applied to a pair of haplotypes,

but tracks their genealogy exactly, up to the discretization

of time. MSMC [49] can use more than two haplotypes,

but only tracks the time to the first coalescence event and

the individuals involved in it. The first version of diCal

[50], inspired by the copying model of [51] and subse-

quent work on conditional sampling distributions (CSDs)

[52,53], considers a particular haplotype and tracks when

and with which other haplotype it first coalesces. PSMC

makes the fewest simplifying assumptions, but as it can

only be applied to two haplotypes it is less powerful than

MSMC or diCal, especially in the recent past.

Furthermore, these methods differ in the types of demo-

graphic models they can infer. PSMC, MSMC, and diCal

v1 all infer piece-wise constant population size histories

for a single panmictic population. CoalHMM and MSMC

are capable of making inferences about multiple popula-

tions: CoalHMM fits simple parametric models, and

MSMC performs non-parametric inference, reporting

‘cross-coalescence rate’ curves (CCRs). While CCRs have

been interpreted in terms of divergence times [4��,49], an

exploration of what models give rise to a particular CCR

has not been performed: if the goal of a study is to fit a

particular demographic model (e.g. a two population

isolation migration model), CCR curves can be a useful

diagnostic, but are difficult to interpret and cannot replace

parametric model fitting. All of the coalescent-HMMs

discussed here are summarized visually in Figure 1.

Recent advances
In response to the aforementioned shortcomings, there

has been much progress in coalescent-HMM methodol-

ogy. In particular, diCal version 2 allows for the paramet-

ric inference of more complex demographic models

involving multiple populations, and SMC++ and ASMC

push the boundaries of scalability for coalescent-HMMs.
Current Opinion in Genetics & Development 2018, 53:70–76
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Figure 1

The sequentially Markovian coalescent views the genealogy relating a

sample of individuals as a sequence of trees along the genome. The

number of possible trees relating a sample grows super exponentially

with sample size, making such a model computationally intractable for

inference. The commonly used coalescent-HMMs make various

simplifications to this full process. PSMC, SMC++, and ASMC only

track the genealogy of a ‘distinguished’ pair of haplotypes. PSMC

ignores the rest of the sample, while SMC++ and ASMC use the other

samples to inform the genealogy of the distinguished pair. ASMC was

designed to work on genotype array data and so skips over sites not

included on the array (middle genealogy). MSMC tracks only the most

recent coalescence event in the whole sample, while diCal tracks the

first coalescence event involving a particular haplotype.
Building on diCal v1 [50] and advances to the CSD frame-

work [54,55], diCal v2 [56] was developed to perform

parametric inference of essentially arbitrarily complex

demographic models, including estimating divergence

times, continuous and pulse migration, and population

sizes with possible exponential growth. The method can

scale to tens of haplotypes and has been used on models

with three populations, but can handle arbitrarily many

populations at increased computational cost. Like diCal v1,

version 2 also considers a particular haplotype, and keeps

track of when and with which other haplotype it first

coalesces — these coalescence events tend to happen in

the recent past making diCal well-powered to investigate

recent history, such as the peopling of the Americas [7,57�].
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diCal v2 has also been used in a hypothesis testing frame-

work: in [57�], Supplementary Information, section 18.4 a

null model of a clean split between two populations was

tested against a model of gene flow following that split.

Furthermore, the CSD framework used by diCal v2 allows

it to infer local ancestry or admixture, which was recently

used to infer tracts of Neanderthal introgression in modern

humans [58].

SMC++ [59��] combines the scalability of SFS-based

methods with the simplicity of PSMC. Like PSMC, it does

not make assumptions beyond the SMC and also does not

require phased data. SMC++ tracks the coalescence time of

a single ‘distinguished’ pair of lineages, but then computes

the likelihood of observing the sequence data of both the

distinguished lineages and the rest of the sample. The

simplicity of the hidden state allows SMC++ to scale to

sample sizes in the hundreds, about an order of magnitude

larger than any other coalescent-HMM presented above,

giving it substantial power in both the recent and ancient

past. It also achieves a substantial speedup by taking

advantage of the fact that genotype data contain long

stretches of non-segregating loci which may be effectively

‘skipped over’ — an idea similar to [60]. Furthermore,

instead of inferring piece-wise constant population sizes,

SMC++ fits population sizes as smooth splines, reflecting a

more realistic scenario of non-instantaneous population

size changes. SMC++ is also capable of inferring diver-

gence times for a pair of populations but makes the assump-

tion that there was no migration after the populations

diverged, which may not always be appropriate.

Recently, ASMC [61�] extended SMC++ to genotype

array data by accounting for SNP ascertainment bias.

ASMC also takes advantage of certain symmetries when

computing likelihoods in the underlying HMM to

achieve extremely fast runtimes — an idea first explored

in [62]. Its speed allowed ASMC to be run on all pairs of

haplotypes from 113,756 phased British individuals

[[61�]] although still at considerable computational cost.

To compare these methods, we performed a small simu-

lation study shown in Figure 2. We considered four

scenarios:

� A bottleneck.

� Constant size (Ne = 104).

� An isolation-with-migration model involving two

populations.

� Exponential growth beginning 500 generations ago.

For each scenario, we used msprime [63��] to simulate

10 replicate data sets each consisting of 30 haploids with

eight 125 Mb chromosomes per haploid. The code used

to simulate data and infer population sizes is fully
www.sciencedirect.com
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Figure 2

Performance of various coalescent-HMMs on simulated data. The

scenarios considered here are: a population experiencing a sharp

bottleneck; a single panmictic population of constant size; samples

from a large population that is exchanging migrants with a smaller

population; and a population that has recently experienced

exponential growth. Each scenario has 10 replicate data sets, with

each data set containing 30 haploids with eight 125 Mb chromosomes

per haploid. PSMC was run with the options ‘-N 25 -p 4+20*3+4’ on a

single pair of haploids. MSMC was run with the default

hyperparameter settings with the ‘fixedRecombination’ flag, using only

4 of the 30 haploids. The same four haploids were used for diCal v2,

and inference was performed by taking the composite likelihood over

all pairs of those four haplotypes, and running 30 EM iterations. SMC+
+ was run with the ‘–timepoints 33’ and ‘–thinning 500’ options.
reproducible and available at https://github.com/terhorst/

coal_hmm_review.

Caveats, pitfalls, and best practices
Despite their power and flexibility, coalescent-HMMs

are not without their pitfalls. All coalescent-HMMs con-

tain tuning parameters that are crucial for good perfor-

mance. A critical factor is the way that time is discretized.

Finer discretization leads to a more accurate approxima-

tion, but the number of discretization points directly

impacts the runtime, so care is needed to balance compu-

tational and accuracy considerations. Additionally, all of

the methods discussed above, save SMC++, group adja-

cent loci and assume that they have the same genealogy.

This assumption decreases the runtime substantially, but

is certainly violated in practice. Depending on the

method and application, it may be acceptable to perform

the grouping at a kb scale, but care should be taken that

such grouping does not influence the results. Further-

more, the likelihoods optimized by coalescent-HMMs —

and demographic inference methods more broadly —

tend to have many local optima. Thus, different initiali-

zations of the methods will likely yield different results,
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making it crucial to take the best of several runs, seeded

with different initializations, as the final inferred model.

Users should also be careful about model choice. As an

example, SMC++ infers population splits in the absence of

gene flow. If there has been pervasive migration between

the populations of interest, then the model inferred by

SMC++ will not be reflective of reality. Additionally, even

seemingly non-parametric methods, like PSMC, make

implicit assumptions such as the data coming from a single

panmictic, neutrally evolving population. Recent studies

[64,65] used simulated data to investigate these model

violations and showed that pervasive selective sweeps or

population structure bias coalescent-HMMs. Another

study [66] showed that when applied to simulated data,

coalescent-HMMs infer models that have an expected SFS

similar to that of the data, but when applied to real data the

SFS of the inferred models does not match that of the data.

This suggests that real data violate the idealized models

that are commonly used for simulation and inference.

We also urge caution in over-interpreting the results of any

demographic inference method. For instance, all methods

infer ‘effective population sizes’, defined as the inverse

coalescence rate for a pair of haplotypes. Under many

models effective population size is correlated with census

population size, but does not need to be; for example, a

structured population will have a larger effective size than a

panmictic population of the same census size.

To avoid the aforementioned pitfalls, we recommend

using multiple methods utilizing different aspects of

the data, such as frequency-based methods and coales-

cent-HMMs. While the exact models inferred will differ

between methods, one can have some confidence in

aspects of the model that are robustly inferred across

methods. We also recommend using the results of either a

pilot run of the coalescent-HMM or the results of another

method (or even PCA [67,68], or STRUCTURE-like

programs [69–72]) to inform model selection — for exam-

ple, if the data appear to come from unadmixed popula-

tions based on this initial fit, it may be appropriate to

assume a clean split model instead of modeling gene flow.

After fitting a model, it is crucial to measure goodness-of-

fit, for example by comparing the SFS and MSMC’s CCR

curves for data simulated from the inferred models to

those computed directly from the real data.

It is also important to understand sources of bias and noise

present in data. Because most coalescent-HMMs make use

of both segregating and non-segregating sites it is crucial to

use ‘masks’ indicating which regions of the genome have

been reliably genotyped. Additionally, when working with

ancient DNA showing an excess of transitions due to

postmortem cytosine deamination [73], we have found that

restricting analysis to only transversions and adjusting the

mutation rate correspondingly improves inference.
Current Opinion in Genetics & Development 2018, 53:70–76
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Finally, as with any statistical analysis, it is important to

study uncertainty in the inferred model, for example, by

bootstrapping, either parametric via simulation or non-

parametric by resampling the data as in [48]. While

parametric bootstrapping is more straightforward, it is

only capable of estimating uncertainty in the estimation

procedure, whereas non-parametric bootstrapping cap-

tures uncertainty in both modeling and estimation, but

cannot reveal bias in the estimates. Note that in demo-

graphic inference, bootstrapping does not produce sta-

tistically valid confidence intervals if the data are used to

perform model selection prior to estimating statistical

uncertainty. However, providing some quantification of

uncertainty is still important.

Outlook
While there has been much recent work on improving the

flexibility, and computational and statistical efficiency of

coalescent-HMMs, there are still a number of open

problems and interesting directions for future research.

As alluded to above, when the sample size is greater than

2, every coalescent-HMM tracks only a part of the gene-

alogy of the whole sample. Such choices are based on

intuition and are made primarily for analytic convenience

to ensure computational tractability. Tree length has

recently been explored as such a choice [74]. Finding

optimal ways of encoding genealogical information in a

small number of discrete parameters remains a challeng-

ing open problem.

While coalescent-HMMs work extremely well on simu-

lated data, they, like most inference methods in popula-

tion genetics, are less stable on real data [66]. This is

likely due to rampant model misspecification: coalescent-

HMMs make many unrealistic assumptions, such as

assuming constant recombination [75,76] and mutation

[77–79] rates across the genome. In addition, all methods

must simplify the ‘true’ demographic model: reality is

always more complicated than any model with a handful

of parameters, presenting a need for more robust

methods.

A major challenge, especially in studying non-model

organisms, is that with the exception of PSMC and

SMC++, coalescent-HMMs are currently unable to han-

dle unphased data. Overcoming this challenge is an

important task for future methods.

Lastly, despite their excellent behavior in practice, our

understanding of coalescent-HMMs is based entirely on

intuition and numerical experiments. In contrast to fre-

quency-based methods, which have a rich literature on

their theoretical properties [24–26,27�,28], coalescent-

HMMs are poorly understood from a theoretical perspec-

tive. While there has been some work on how accurately

demographic history can be inferred directly from
Current Opinion in Genetics & Development 2018, 53:70–76 
genealogies [80,81], in the more realistic coalescent-

HMM setting even the basic question of whether demo-

graphic models are statistically identifiable is

unanswered.
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