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Inference and analysis of population-specific
fine-scale recombination maps across 26 diverse
human populations
Jeffrey P. Spence1* and Yun S. Song2,3*

Fine-scale rates of meiotic recombination vary by orders of magnitude across the genome and differ between species
and even populations. Studying cross-population differences has been stymied by the confounding effects of
demographic history. To address this problem, we developed a demography-awaremethod to infer fine-scale recom-
bination rates and applied it to 26 diverse human populations, inferring population-specific recombination maps.
These maps recapitulate many aspects of the history of these populations including signatures of the trans-Atlantic
slave trade and the Iberian colonization of the Americas. We also investigated modulators of the local recombination
rate, finding further evidence that Polycomb group proteins and the trimethylation of H3K27 elevate recombination
rates. Further differences in the recombination landscape across the genome and between populations are driven by
variation in the gene that encodes the DNA binding protein PRDM9, and we quantify the weak effect of meiotic drive
acting to remove its binding sites.
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INTRODUCTION
Meiotic recombination is a fundamental genetic process and a critical
evolutionary force, which generates haplotypic diversity in sexually
reproducing species. In many species, including humans, a zinc finger–
containing protein, PRDM9, directs recombination, resulting in hot-
spots of recombination at its binding sites (1). Yet, PRDM9 binds
ubiquitously throughout the genome, including at promoters, and
only a subset of these corresponds to recombination hotspots, sug-
gesting that PRDM9 binding may be necessary but not sufficient (2).
PRDM9 is capable of trimethylating H3K4 and H3K36 (3), and in
species that lack a functional copy of PRDM9, recombination is con-
centrated at promoters (4), indicating that chromatin structure plays
a role in recombination (5).

PRDM9-directed recombination has fundamental consequences:
recombination hotspots partition the genome into blocks with low in-
terblock linkage but high intrablock linkage, shaping patterns of linked
selection (6). In addition, an excess of sites where PRDM9 binds one
chromosome but not its homolog can lead to male sterility (7, 8). Such
asymmetric binding sites are common in interspecies hybrids,
providing a mechanism for the long-known phenomenon of PRDM9
acting as a speciation gene (9). Furthermore, asymmetric binding
followed by the introduction of a double-strand break and subsequent
homology-directed repair results in meiotic drive against the PRDM9
binding allele, which is equivalent to genic selection at the population
level (10). Over evolutionary time scales, this meiotic drive erodes the
binding sites of PRDM9, generating strong positive selection on
PRDM9 mutants with new binding sites (11, 12), explaining why
PRDM9 is one of the fastest evolving genes (13). These evolutionary dy-
namics have been studied theoretically (10, 14) and between species
(12), but previous empirical investigations have been primarily qualita-
tive rather than quantitative.
We developed a new method, called pyrho, to infer fine-scale re-
combination rates while taking population demography into account
and applied it to 26 diverse human populations from phase 3 of the
1000Genomes Project (1KG) (15).We then used the resulting accurate,
high-resolution maps to investigate the determinants, impacts, and dy-
namics of recombination rate variation. Software implementing our
method and the inferred recombination maps are available at https://
github.com/popgenmethods/pyrho.
RESULTS
Fast, accurate inference of fine-scale recombination rates
Ourmethod uses polymorphism data from unrelated individuals to in-
fer fine-scale recombination maps and can be applied to either phased
or unphased data. We make use of a composite-likelihood approach
(16–18) that has been shown to have favorable statistical properties
(19), but unlike previous methods, we avoid computationally expensive
Markov chain Monte Carlo (MCMC) by using a penalized likelihood
framework and gradient-based optimization (20, 21). Increasing com-
putational efficiency by moving from a Bayesian formulation to a fre-
quentist formulation is a common approach [e.g., (22)]. Our approach is
between 10 and 450 times faster than LDhat (17), a popular MCMC-
based method, while improving accuracy (Materials and Methods;
Fig. 1A, fig. S1, and table S1). We also make use of our recent work
on computing two-locus likelihoods (23): This allows us to scale to
hundreds of individuals, whereas LDhat can accommodate at most
100 diploid individuals, and, importantly, enables us to account for
nonequilibrium demographic histories. Failing to account for past fluc-
tuations in population size has been shown to substantially affect the
accuracy of inferred fine-scale recombination rates (23–25). The details
of our method are presented in Materials and Methods.

Using samples of unrelated individuals, we are able to producemore
accurate, higher-resolution maps from tens to hundreds of individuals
than admixture-based (26, 27) or trio-based methods (28), which re-
quire data from thousands or tens of thousands of individuals, making
our method applicable to a broader set of species and populations, in-
cluding unadmixed populations and populations with few sequenced
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individuals. Many recent studies have used approaches similar to ours in
a number of nonmodel organisms [e.g., flycatchers (29), monkey flowers
(30), house mice (31), and sticklebacks (32)] and would benefit from
properly accounting for the demographic histories of these species.

Amajor difference between ourmethod and trio- or admixture-based
methods is the sex and temporal resolutionof our inferred recombination
rates. Trio-based study designs are capable of inferring sex-specific fine-
scale recombination rates and measure the present-day recombination
rate. Our method and admixture-based methods infer time- and sex-
averaged recombinationmaps because they implicitly average overmany
generations. In the case of admixture-based maps, the inferred recombi-
nation maps are an average since the time of admixture, whereas in our
case the averaging is over much longer time scales in a way that depends
on sample size but, in humans, is on the order of hundreds of thousands
of years. Larger sample sizes will cause the inferredmaps to dependmore
on recent recombination rates, but the exact temporal dependence of
such methods depending on sample size is an open theoretical question.

To explore variation in fine-scale recombination rates across human
populations,we inferred population size histories for each of the 26pop-
ulations in 1KG (15) using smc++ (Fig. 2A) (33) and used these size
histories to infer population-specific fine-scale recombination maps.
Our maps provide a significantly better fit of the observed r2, a
commonly used measure of linkage disequilibrium, especially at finer
scales [mean square error between empirical and theoretical quantiles:
P < 1 × 10−5 for each population considered—CEU (Utah residents
with northern and western European ancestry), CHB (Han Chinese
in Beijing, China), and YRI (Yoruba in Ibadan, Nigeria)—for all com-
parisons between our maps and those inferred in (15, 26, 28, 34); two-
sided permutation test; Materials and Methods, Fig. 1B, and fig. S2].
This improvement is particularly pronounced in non-European po-
pulations, such as YRI, and could be due to unrealistic assumptions
of equilibrium demography made by other methods, a mismatch be-
tween the populations used to compute the other maps [e.g., the re-
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
combination maps fromDECODE (28) are inferred using Icelanders]
or to previous methods having hyperparameters tuned to European-
like demographies.

Recombination maps reflect demographic history
Our inferred recombination maps are largely concordant between
populations, with high correlation between all maps, even at the
single–base pair resolution (Spearman’s r > 0.70 for all pairs), but some
differences remain. As seen in Fig. 2B, the correlation between recom-
bination maps largely recapitulates known demographic history,
clustering continental-level super-populations, and at a finer resolution
separating northern and southern European populations, and to a lesser
extent separating the eastern African Luhya in Webuye, Kenya (LWK)
from west African and primarily west African–descended populations.
Admixed American populations show similarity to both African and
European populations, particularly the Iberian population in Spain, es-
pecially in Puerto Ricans, providing evidence that the trans-Atlantic
slave trade and European colonization, respectively, may have affected
the recombination rates of present-day admixedAmerican populations.
In fig. S3, we show a direct comparison of the correlation of fine-scale
recombinationmaps to the correlation of fine-scale nucleotide diversity
across populations, showing that across all scales we considered (1 kb,
10 kb, 100 kb, and 1 Mb), populations with more similar patterns of
diversity havemore similar recombinationmaps. Overall, the correlation
of inferred recombination rates is greater than the correlation of nucleo-
tide diversity, which may suggest that fine-scale recombination rates are
more stable than localmutation rates. Yet, for the reasonsdiscussedbelow
aswell as the fact thatmeasures of nucleotide diversity are noisy estimates
of the mutation rate, we note that this may be a result of regression at-
tenuation and leave amore thorough comparison of the evolution of local
mutation and recombination rates as a subject for future study.

While such correlations in fine-scale recombination rates across po-
pulations could be due to increased sharing of recombinations in the
Fig. 1. Accuracy of inference on simulated and real data. (A) Spearman correlation between inferred and truemaps for 100 simulations, each 1Mb long, for bothpyrho and
LDhat, with our method showing improved performance especially at finer scales. (B) Our inferred recombination maps provide a better fit to observed patterns of linkage
disequilibrium asmeasured by r2. For a pair of SNPs, r2 is a random quantity and depends on the rate of recombination between the SNPs. Solid lines show theoretical deciles of
this distribution for pairs of sites separated by different recombination distances with MAF >0.1 at both sites as calculated under the population size for YRI in Fig. 2A. Shaded
points are the deciles of the empirical distribution obtained by considering pairs of sites with MAF >0.1 binned by the recombination rate separating them according to the
different recombination maps. 1KG YRI is the population-specific recombination map for YRI in (15); DECODE is the sex-averaged recombination map in (28); and HapMap is the
recombination map in (34).
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genealogy of individuals from more closely related populations, they
could reflect population-level differences in the determinants of fine-
scale recombination rate, such as differences in local chromatin struc-
ture, PRDM9 binding site locations, or PRDM9 alleles. There are
multiple PRDM9 alleles that bind different motifs in humans (35),
and while the PRDM9-A allele predominates in all non-African popu-
lations, both the PRDM9-A and PRDM9-C alleles are common in
African populations, suggesting that African populations may have ad-
ditional recombination hotspots. This is borne out in our inferredmaps,
with computationally predicted PRDM9-A binding motifs showing
elevated recombination rates in all populations but computationally
predicted PRDM9-C binding motifs showing exceptionally elevated
rates in African populations (Fig. 2C) relative to matched shuffled ver-
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
sions of themotifs. Anumber of PRDM9-Amotifs have only very slightly
elevated recombination rates relative to their shuffled controls, indicat-
ing that these motifs likely have low specificity. While computational
prediction of binding motifs for PRDM9 is difficult (36), imperfect pre-
dictions should not result in the population-specific elevation of recom-
bination rates within predicted PRDM9-C binding motifs.

Rate of erosion of PRDM9 binding sites
An important consequence of PRDM9-driven recombination ismeiotic
drive against PRDM9binding alleles, resulting fromhomology-directed
repair of double-strand breaks initiated at the binding motif. While this
process has been examined using the divergence between humans and
closely related species (12, 37), the magnitude of the effect has not been
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Fig. 2. Interplay of demographic history and fine-scale recombination rates. (A) Population sizes as inferred by smc++. All non-African populations show an out-of-
Africa bottleneck, which is deepest in East Asian populations. (B) Heatmap of the Spearman correlation between the inferred recombination maps at single–base pair
resolution. All maps show a high degree of correlation, yet the relative correlations agree with continental levels of population differentiation. (C) Recombination rates
at different PRDM9 binding motifs in each population, normalized by the log average recombination rate in a shuffled version of that motif. PRDM9-A binding motifs
show consistent recombination rates across all populations, while PRDM9-C binding motifs show particularly elevated rates in African populations. Three-letter pop-
ulation codes are defined in Table 1.
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quantified. As meiotic drive is equivalent to genic selection on evolu-
tionary time scales (10), we may summarize its strength in terms of
an effective selection coefficient, s, acting against PRDM9 binding al-
leles. This selection must be strong enough to explain the substantial
divergence between humans and closely related species at PRDM9
binding sites (12, 37) but not so strong as to drive population-level dif-
ferences within humans: Male hybrids from species of mice with sub-
stantial differences in the locations of PRDM9 binding sites are infertile
(7, 8), whereas such incompatibilities obviously do not exist in humans.

To estimate the selection coefficient s, we computationally predicted
genomic regions that bind PRDM9-A across the autosomes for each
haplotype in 1KG and constructed a diallelic sample frequency
spectrum (SFS) for each population by treating sequences that can pu-
tatively bind PRDM9-A as one allele and sequences that cannot as the
alternative allele (Materials andMethods). Because PRDM9 is predicted
to bind ubiquitously and not all PRDM9 binding sites are recombina-
tion hotspots, we subdivided each SFS by local recombination rate. We
then used each SFS to infer swhile controlling for background selection
and misspecification of the demography (Materials and Methods). For
low to moderate recombination rates, we inferred selection coefficients
close to zero, consistent with these PRDM9 binding sites not being
“true” recombination hotspots, while for the highest recombination
rates, we inferred weak but nonzero selection against the PRDM9
binding allele (s ≈ 5 × 10−5 to 20 × 10−5; Fig. 3).

The above analysis implicitly assumes that the strength of selection
has been temporally constant, which is certainly violated as the motif-
determining zinc finger array of PRDM9 evolves extremely rapidly (e.g.,
archaic hominins likely do not have the PRDM9-A allele) (38). We
therefore caution that we may be underestimating s.

Overall, this indicates that the meiotic drive acting against PRDM9
binding sites is equivalent to selection on the order of the inverse of the
effective population size, meaning that it is a fairly weak evolutionary
force. This is in contradiction to previous assumptions that PRDM9 ra-
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
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pidly erodes its own binding sites (14) and calls into question the hy-
pothesis that this erosion causes the rapid evolution of PRDM9. Amore
plausible explanation for the rapid evolution of PRDM9 is that a small
number of frequently used hotspots are crucial for the proper segrega-
tion of chromosomes during meiosis and that the strength of meiotic
drive at these hotspots is much stronger. PRDM9 binding sites on short
chromosomes—especially in the pseudo-autosomal region in males—
are promising candidates because recombination is necessary for proper
chromosomal segregation and there are likely only a handful of
potential PRDM9 binding sites in such small regions (10, 39). This
would be consistent with our findings since we infer only an average
strength of meiotic drive on autosomes, which does not preclude that
a small number of sites on the autosomes or sites on the sex chromo-
somes might be experiencing extremely strong meiotic drive.

Chromatin affects fine-scale recombination rates
Because fine-scale recombination rates vary substantially even outside
of PRDM9-driven hotspots, we also searched for modulators of fine-
scale recombination rates beyond PRDM9, finding a role for chromo-
some length, distance to the telomere, and chromatin state. Specifically,
there is a nearly linear relationship between total physical and total ge-
netic length across chromosomes, with a significantly positive slope and
intercept (slope, P = 7.76 × 10−13; intercept, P = 1.30 × 10−7; fig. S4A).
The positive intercept confirms that chromosomes require some
minimum number of crossovers during meiosis, while the positive
slope indicates that longer chromosomes can and do havemore cross-
overs. Furthermore, recombination rates are elevated in subtelomeric
regions (fig. S4B), likely due to the geometry of the chromosomes dur-
ing meiosis (40).

We also found a significant role for chromatin structure in shaping
fine-scale recombination rates.We used annotations fromchromHMM
(41) called on 127 ENCODE epigenomes (42); because this dataset does
not contain calls in gametic cells, we used themost common chromatin
state across the 127 cell types as the label for each locus. As a result, our
chromatin state labels are at best a proxy for the true chromatin state in
premeiotic cells, and there may be substantive differences between such
cells and the 127 cell types in the ENCODE dataset (43). Furthermore,
as mentioned above, our recombination estimates represent a historical
average, whereas the ENCODE dataset measures modern chromatin
structure. As both recombination rate and chromatin structure are like-
ly changing over time, there is a mismatch of time scales. With these
caveats in mind, we found that recombination rates vary significantly
across chromatin states [P<2.2 ×10−16 , analysis of variance (ANOVA);
Fig. 4] and that this effect is not driven by differences in background
selection (fig. S5 and Materials and Methods). Repetitive regions of
the genome have the lowest recombination rates, consistent with a pre-
vious finding that a motif present in THE1B repeats is associated with
lower recombination rates (2), and suggesting that recombination sup-
pression in repetitive regions is a broader phenomenon. We also found
lower recombination rates in transcribed regions, providing support for
the hypothesis that PRDM9 evolved to direct recombination away from
functionally important regions (44). Furthermore, recombination rates
are low in “closed” heterochromatic or quiescent regions perhaps be-
cause these regions preclude access to the recombination machinery.

We found that chromatin states partially characterized by H3K27me3,
especially those called as being repressed by Polycomb group proteins
(PcGPs), have the highest recombination rates, suggesting a role for
H3K27me3 and PcGPs in meiotic recombination. This connection
has been noted before, with PcGPs being recruited to double-strand
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4 of 14

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on A
pril 8, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

breaks (45) and disruption of the PcGP repression pathway leading to
improper chromosomal segregation (46). This improper segregation in
PcGPmutants may be due to a reduced number of successful crossover
events in the absence of the H3K27me3marks deposited by PcGPs.We
also note that the substantial impact of chromatin on local recombina-
tion rates, along with differences between chromatin structure in male
and female gametic progenitor cells, could explain previously observed
sex-specific differences in fine-scale recombination rates (47). While
this manuscript was in preparation, a pedigree-based analysis of
crossover recombinations in a large number of Icelandic parent-off-
spring pairs also found that H3K27me3 and PcGPs are associated with
higher local recombination rates (48), corroborating our finding based
on population genetic analysis.

The distribution of PRDM9 binding sites across chromatin states is
nonuniform (P < 2.2 × 10−16, c2 test; fig. S4D), and putative PRDM9
binding is associatedwith a 26% increase in recombination rate over the
shuffled control (P < 2.2 × 10−16, t test; fig. S4C), but the variation in
recombination rate across chromatin state cannot be explained by dif-
ferences in PRDM9 binding (P < 2.2 × 10−16 when controlling for
PRDM9 binding status). Differences in PRDM9 binding across chro-
matin state can be partially explained by sequence identity by compar-
ing to a shuffled version of the motif, but the distribution of motifs
across the chromatin states is not the same for the shuffled and true
motifs (P < 1 × 10−5, c2 test).

To investigate the interplay of PRDM9 and chromatin state, we
compared a model where PRDM9 affects recombination rate in a
chromatin-independent fashion (independent effects model) with a
model where PRDM9 can have different effects in different chromatin
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
contexts (dependent effectsmodel), and found that the dependent effects
model fits better (P < 2.2 × 10−16, F test). In spite of favoring the
dependent effects model, we found that in most chromatin states, the
predicted mean recombination rate is similar to that in the independent
effects model (Fig. 4), indicating that PRDM9 and chromatin state
usually act independently. A notable exception is at transcription start
sites, where PRDM9 binding is found to have an attenuated effect on re-
combination rate. Yet, this effect is largely recapitulated even by shuffled
PRDM9 binding motifs, indicating a PRDM9-independent mechanism
for preventing sequence-based increases in recombination rate.
DISCUSSION
Despite its role as one of the primary evolutionary forces in sexually
reproducing populations, much remains unknown about the modu-
lators of the fine-scale recombination rate and the mechanisms by
which they act. While PRDM9 has been known to direct the position-
ing of crossovers in many species (1), our results and a number of re-
cent works (2, 48) suggest that this is far from the complete picture:
The fact that many distinct biological processes are associated with
differences in local recombination rates suggests that these fine-scale
recombination rates are highly polygenic traits. This polygenic view of
recombination may explain our observation that the correlation of
fine-scale recombination maps between populations largely recapitu-
lates demographic history. While such population-scale differences
are due, in part, to differences in the frequency of the various PRDM9
alleles as well as differences in the frequencies of PRDM9binding sites,
these cannot explain differences between closely related populations
Lo
g 

av
er

ag
e 

re
co

m
bi

na
tio

n 
ra

te

ZN
F 

ge
ne

s 
&

 re
pe

at
s

S
tro

ng
 tr

an
sc

rip
tio

n

W
ea

k 
tra

ns
cr

ip
tio

n

H
et

er
oc

hr
om

at
in

Q
ui

es
ce

nt
/lo

w

G
en

ic
 e

nh
an

ce
rs

Tr
an

sc
r. 

at
 g

en
e 

5'
 a

nd
 3

'

A
ct

iv
e 

TS
S

Fl
an

ki
ng

 a
ct

iv
e 

TS
S

E
nh

an
ce

rs

B
iv

al
en

t/p
oi

se
d 

TS
S

Fl
an

ki
ng

 b
iv

al
en

t T
S

S
/E

nh

W
ea

k 
re

pr
es

se
d 

P
ol

yc
om

b

B
iv

al
en

t e
nh

an
ce

r

R
ep

re
ss

ed
 P

ol
yc

om
b

1e–9

3e–9

6e–9

1e–8

3e–8

6e–8

PRDM9 nonbinding
PRDM9 binding motif
Shuffled motif
All sites

PRDM9 + Chromatin: Ind. Effects
PRDM9 + Chromatin: Dep. Effects
Chromatin Only

Fig. 4. PRDM9 and chromatin structure shape fine-scale recombination rates. Different chromatin states have substantially different average recombination rates as
determined by fitting a model using only chromatin state (Chromatin only), a model with independent chromatin state and PRDM9 binding effects (PRDM9 + Chromatin:
Ind. Effects), and a model where PRDM9 binding may have a different effect in different chromatin states (PRDM9 + Chromatin: Dep. Effects). Sites characterized by
H3K27me3 marks (bivalent states and regions repressed by Polycomb) have the highest recombination rates, while repetitive regions, transcribed regions, and
heterochromatic or quiescent regions all have depressed recombination rates. ZNF, zinc finger genes; TSS, transcription start site.
5 of 14

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E
because the PRDM9-A allele predominates in non-African popula-
tions and it only erodes its binding sites very weakly. Thus, other
forces must explain the observed correlation between fine-scale re-
combination rates and demography.

To gain a better understanding of these determinants of recombina-
tion, fine-scale rates of recombination should be inferred and compared
across the tree of life, especially in closely related species where one
contains a functional copy of PRDM9 and one does not. By explicitly
accounting for differences in demographic history betweendifferent po-
pulations and species, andworkingwith fewer samples than required by
trio- or admixture-based approaches, our method will facilitate such
comparisons, hopefully illuminating the mechanisms underlying the
fundamental process of recombination.
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MATERIALS AND METHODS
Gradient-based estimation of fine-scale recombination rates
Penalized composite-likelihood method for phased data
To infer a fine-scale recombination map using n haplotypes with L
single-nucleotide polymorphisms (SNPs), an obvious first approach
would be to attempt to either maximize the likelihood

max
r1;…;rL�1

ℙ ðhi;ℓÞði:1…nÞ;ðℓ:1…LÞ∣r1;…; rL�1

h i

or obtain a posterior

ℙ r1;…; rL�1∣ðhi;ℓÞði:1…nÞ;ðℓ:1…LÞ
h i

º

ℙ ðhi;ℓÞði:1…nÞ;ðℓ:1…LÞ∣r1;…; rL�1

h i
ℙ r1;…; rL�1½ �

where r1,…, rL − 1 are the recombination rates between each pair of
adjacent SNPs, and hi,ℓ is the allele of haplotype i at position ℓ. Un-
fortunately, the full likelihood of the data is intractable. Many
methods then make the following approximation (16) [but see
(49–52), which use machine learning or regression approaches to in-
fer recombination rates based on simulations, and (53, 54), which use
hidden Markov models]

ℙ ðhi;ℓÞði:1…nÞ;ðℓ:1…LÞ∣r1;…; rL�1

h i
≈

Y
ℓ;k:∣ℓ�k∣<w

ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �
with some window sizew, which works well in practice and has attract-
ive theoretical properties (19). This also has a justification from the
composite-likelihood literature (55). This pairwise likelihood only de-
pends on the total recombination rate separating the two points, which
suggests that one could precompute these likelihoods for each possible
two-locus haplotype configuration at a grid of recombination rates. Re-
cent work (23) has enabled the computation of these likelihoods for
sample sizes in the hundreds.

A drawback of this composite-likelihood approach is that it tends to
produce extremely variable estimates. To reduce the variance in the
estimate, past approaches have included a prior over-recombination
maps that explicitly enforce smoothness and have used MCMC to ob-
tain samples from the composite posterior over-recombination maps
(17, 18, 56). Note that these samples are from a “composite posterior”
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
and not a true posterior because we have replaced the true likelihood
with the composite likelihood. Thus, although these methods provide
some sense of the uncertainty in the estimated recombination map, the
estimated uncertainty is likely to be inaccurate (56). A downside of
MCMC is that it is slow due to the need to repeatedly evaluate the
composite likelihood.

We circumvent MCMC by performing penalized composite-
likelihood inference. To enforce that recombinationmaps are smooth,
but to allow some large jumps (e.g., at hotspots), we added an ℓ1 pen-
alty to the difference of the log of adjacent recombination rates, which
is referred to in other settings as the fused-LASSO (20). Specifically, we
seek to solve the following optimization problem

max
r1;…;rL�1

∑
ℓ;k:∣ℓ�k∣<w

log ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ…þ rk�1

� ���

l ∑
L�2

ℓ¼1
∣logðrℓþ1Þ � logðrℓÞ∣

�

Note that this is a high-dimensional optimization problem,making
derivative-free optimization methods prohibitively slow. We therefore
seek to compute gradients of the likelihoodwith respect to (r1,…, rL − 1),
which is problematic because we have replaced exact evaluation of the
pairwise log-likelihoods by looking up entries in a precomputed table.
To sidestep this issue, we linearly interpolate between the precom-
puted log-likelihoods, which makes computing gradients an elemen-
tary exercise in linear algebra. Note that, due to using linear
interpolation, there are nondifferentiable points of the likelihood
function, but we circumvent this issue by arbitrarily using the slope
of the line infinitesimally to the right of any nondifferentiable point.
We find that this does not markedly affect the results. Furthermore,
for values of the recombination rate that lie outside of the ranges pre-
computed in the lookup table, we use the closest entry in the lookup
table (either the maximum or minimum recombination rate in the
table) and treat the derivative as zero. We use these gradients in a
proximal gradient descent method for fused-LASSO problems
(21).We found that this optimization scheme usually convergeswithin
tens of evaluations of the objective function, making it highly efficient.

One further subtlety is that this optimization problem is noncon-
vex, implying that there may be local optima in which our optimiza-
tion scheme could get stuck. One could initialize the optimization at a
number of random points and then take the best result, but we take an
alternate approach. We first perform a univariate minimization,
treating the region as having a single, constant recombination rate.
We then use this estimate as our initialization, which should further
regularize the optima we find toward being “close” to the constant re-
combination map.

To further speed up inference, we divide the genome into windows
that contain 4001 SNPs that overlap by 100 SNPs and optimize each
window independently. We then trim the inferred recombination rates
corresponding to the first and last 50 SNPs from each window, and
combine the resulting estimates to obtain a recombination map. This
process of windowing the genome allows us to runmany optimizations
in parallel.

Our method is implemented in python and makes extensive use of
numba (57), a just-in-time LLVMcompiler for python, to optimize nu-
merical routines.We alsomake use of cyvcf2 (58) to enable the rapid
parsing of VCF, bgzipped VCF, and BCF file formats.
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Handling unphased data
Our method can also handle unphased data for genotypes from diploid
organisms. In principle, one would want to maximize

max
r1;…;rL�1

∑
h consistent with g

ℙ ðhi;ℓÞði:1…nÞ;ðℓ:1…LÞ∣r1;…; rL�1

h i

where g is the observed unphased data, and “h consistent with g”
would be the set of phased haplotypes that are equivalent to g when
unphased.We could then apply our composite-likelihood approxima-
tion to obtain

max
r1;…;rL�1

∑
h consistent with g

Y
ℓ;k:∣ℓ�k∣<w

ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �
but unfortunately, the outer sum is intractable as it requires phasing all
sites simultaneously. Furthermore, it would be difficult to compute
gradients under this formulation due to the product. Instead, wemake
a further approximation by swapping the sum and product to obtain

Y
ℓ;k:∣ℓ�k∣<w

∑
h consistent with g

ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �

While this approximation is admittedly dubious, we may arrive at
the same result by first using the composite-likelihood approximation
and then summing over consistent haplotypes as follows

ℙ ðgi;ℓÞði:1…nÞ;ðℓ:1…LÞ∣r1;…; rL�1

h i
≈

Y
ℓ;k:∣ℓ�k∣<w

ℙ ðgi;ℓÞi:1…n; ðgi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �
¼

Y
ℓ;k:∣ℓ�k∣<w

∑
h consistent with g

ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �

In either case, we now only need to phase two loci at a time, and
having the product on the outside allows us to take the log and obtain a
linear expression

∑
ℓ;k:∣ℓ�k∣<w

log ∑
h consistent with g

ℙ ðhi;ℓÞi:1…n; ðhi;kÞi:1…n∣rℓ þ⋯þ rk�1

� �� �� 	

Furthermore, we may precompute the values inside of the log by
using our lookup table of haploid likelihoods at a grid of recombina-
tion rates. Summing over the consistent haplotypesmay be performed
efficiently using equations 10 to 12 in (16).Wemay then use these new
precomputed lookup tables as a drop-in replacement when running
our optimization scheme.

Benchmarking
Timing
To obtain timings for ourmethod andLDhat for a realistic use case, we
computed the time it took to infer a recombinationmap for chromosome-
scale data. Both methods make use of the same precomputed lookup
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
table of two-locus likelihoods, and so we did not benchmark the cre-
ation of those tables, which has been done previously (23). Thus, we
compare only the amount of time to infer a recombinationmap.Using
msprime (59), we simulated 10 replicates of datamatching the length
of chromosome 1 with the HapMap recombination map (34) and
under the demography inferred for CEU, for a sample size of n =
196 haploids. Because LDhat does not allow parallelization, we wrote a
python script to separate the data into the same overlapping windows
used in our method (windows of 4001 SNPs overlapping by 100 SNPs).
We ran our method pyrho using 32 cores and also used 32 cores to
parallelize LDhat runs. For the LDhat runs, we then used a python
script to combine the output of the runs. Because our scripts for
splitting and combining the data for LDhat are not optimized, we
only timed the total runtime of LDhat and compared that to the total
time pyrho required, which is slightly advantageous for LDhat. We
used the “optimal” hyperparameters for pyrho as discussed below
and used the default parameters for LDhat, which were tuned to a
human-like setting. The timings are presented in fig. S6, showing that
in our simulations pyrho was, on average, at least 10 times faster
than LDhat. Yet, when generating the 1KG maps, LDhat was run
on windows of 2000 SNPs, and the MCMC was run for 22.5 million
iterations per window, whereas we used only 1 million iterations per
window in our timing benchmark. Computing the recombinationmaps
for chromosome 1 for 1KG thus likely took between 22.5 and 45 times
longer than the results reported here, suggesting that our method is
closer to between 225 and 450 times faster.
Accuracy on simulated data
To assess the accuracy of our method, we used msprime (59) to
simulate 100 sequences of 1 Mb with recombination maps randomly
drawn from the HapMap recombination map (34) under the demog-
raphy inferred for CEU. We then used the lookup table generated for
CEU,which takes demography into account, forpyrho, while using a
constant-demography lookup table for LDhat, as is the default for
that program. For each simulation, we took the middle 500 kb and
computed the correlation between the true recombination map and
the inferred recombination map. We computed the Pearson correla-
tion in both natural and log scale, and also the Spearman correlation.
To avoid issues with autocorrelation, we look at windows centered at
every 10,000th position. To assess the correlation at different spatial
scales, we considered windows of different sizes [1 base pair (bp), 1 kb,
and 10 kb].

We also performed simulations as above but with smaller sample
sizes, n ∈ {20,40,60,80,100,120} and per-generation mutation rates a
factor of 10 times lower or higher than humans, m ∈ {1.25 × 10−9,1.25 ×
10−8,1.25 × 10−7}, to show the applicability of pyrho to other species
and sample sizes. In all cases, we used the demography for CEU and
scaled the fine-scale recombination rates such that the ratio of themu-
tation and recombination rates remained fixed across different muta-
tion rates. We performed hyperparameter optimization as described
below for each sample size and mutation rate combination and then
ran pyrho. The results are presented in fig. S1C. Overall, we find that
the method performs better for species with higher levels of diversity
(i.e., those with a larger mutation rate) and for larger sample sizes, al-
though with some diminishing returns.

We also investigated whether the differences betweenpyrho and
LDhat are due to the optimization scheme (i.e., fused-LASSO versus
MCMC) or due to the effect of taking demographic history into ac-
count. Using the same simulations as described above, we reranLDhat
using the demography-aware lookup table used by pyrho and
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computed the same measures of correlation between these inferred
maps and the true maps. We found that at fine scales pyrho outper-
forms LDhat by any measure regardless of whether LDhat used a
constant-demography lookup table or the demography-aware
lookup table. At broader scales, pyrho outperformed LDhat if
LDhat used a constant-demography lookup table but performed
comparably to LDhat using the demography-aware lookup table.
Meanwhile, the demography-aware version of LDhat outperformed
the version of LDhat that assumed a constant-demography at all
scales. The results are summarized in table S1.
Comparison of r2 on the 1000 Genomes Project dataset
To get a sense of accuracy on real data, we computed a measure of
linkage disequilibrium, r2, between pairs of nearby SNPs. We used
vcftools (60) with the –hap-r2, −-ld-window 15, −-thin
2000,–maf 0.1, and –max-missing 1 flags. Briefly, this removes
all missing data, removes SNPs until they are all separated by at least
2 kb, and removes SNPs with a minor allele frequency (MAF) less
than 10% and then computes the r2 for all SNPs within 15 SNPs of
each other. For each pair of SNPs, we then computed the recombi-
nation rate between them as determined by a given fine-scale recom-
binationmap.We sorted the pairs of SNPs by the recombination rate
between them, grouped them into bins of 1000 pairs of SNPs, and
reported the empirical deciles from that bin. We compared these
against the theoretical deciles of the distribution of r2 for sample sizes
matched to the observed sample sizes for SNPs with MAF greater
than 10%, which we computed from the lookup tables we generated
as discussed below. The results for YRI are presented in Fig. 1B, and
the results for CEU and CHB are presented in fig. S2. See Table 1 for
a list of three-letter population codes.

To determine whether the differences between maps are statistically
significant, we computed the mean square error between the empirical
and theoretical deciles, averaged across all of the bins of pairs of SNPs
for different maps. To compare two maps, we used the difference in
theirmean square error as a test statistic and obtained a null distribution
by performing 1million permutations of the bins (i.e., randomly assign-
ing each bin to onemap or the other,making sure that eachmap has the
correct number of bins).We compared themaps that we inferred to the
linkage disequilibrium-basedmaps, HapMap (34) and 1KG (15); a trio-
basedmap, DECODE (28); and an admixture-basedmap (26).We per-
formed this comparison for CEU, CHB, and YRI using the appropriate
population for our population-specificmaps and the population-specific
maps of 1KG.That is, overall, we performed12 comparisons (comparing
our maps against four others in three different populations). For each
comparison, we found that our recombination maps had a lower mean
square error between the empirical and theoretical deciles with no per-
mutations providing an equal or greater improvement, conservatively
implying P < 1 × 10−5 for each comparison.

Inference of population size histories
We applied smc++ (v1.11.1) (33) to infer population size histories
using a previous build of the genome (hg19). All individuals for a given
population were included in the analysis, with the first five individuals
(alphabetically by sample name) being used as “distinguished” indivi-
duals in the composite likelihood. We assumed a mutation rate of
1.25 × 10−8 per base per generation and masked out sites according to
Stephan Schiffels’mappability mask available at https://oc.gnz.mpg.de/
owncloud/index.php/s/RNQAkHcNiXZz2fd. Otherwise, all default
parameter settings of smc++ were used, and a generation time of
29 years (61) was used to convert generations to years.
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
Lookup table generation
When using the population sizes inferred in the previous section to
build lookup tables for pyrho, we made some approximations to re-
duce the computational cost. The population size functions returned
by smc++ using the plot command are piecewise constant, with
many pieces. To reduce the number of pieces, we started at present
and combined adjacent pieces by taking the harmonic mean of the
Table 1. Populations in the 1KG dataset (15). The super-populations are
African (AFR), admixed American (AMR) East Asian (EAS), European (EUR),
and South Asian (SAS).
Population
code
Population
 Super-
population

code
ACB
 African Caribbeans in Barbados
 AFR
ASW
 Americans of African
Ancestry in SW USA
AFR
BEB
 Bengali from Bangladesh
 SAS
CDX
 Chinese Dai in Xishuangbanna, China
 EAS
CEU
 Utah residents (CEPH) with
Northern and Western
European ancestry
EUR
CHB
 Han Chinese in Beijing, China
 EAS
CHS
 Southern Han Chinese
 EAS
CLM
 Colombians from Medllin, Colombia
 AMR
ESN
 Esan in Nigeria
 AFR
FIN
 Finnish in Finland
 EUR
GBR
 British in England and Scotland
 EUR
GIH
 Gujarati Indian from Houston, Texas
 SAS
GWD
 Gambian in Western Divisions
in the Gambia
AFR
IBS
 Iberian population in Spain
 EUR
ITU
 Indian Telugu from the
United Kingdom
SAS
JPT
 Japanese in Tokyo, Japan
 EAS
KHV
 Kinh in Ho Chi Minh City, Vietnam
 EAS
LWK
 Luhya in Webuye, Kenya
 AFR
MSL
 Mende in Sierra Leone
 AFR
MXL
 Mexican ancestry from
Los Angeles, USA
AMR
PEL
 Peruvians from Lima, Peru
 AMR
PJL
 Punjabi from Lahore, Pakistan
 SAS
PUR
 Puerto Ricans from Puerto Rico
 AMR
STU
 Sri Lankan Tamil from the
United Kingdom
SAS
TSI
 Toscani in Italia
 EUR
YRI
 Yoruba in Ibadan, Nigeria
 AFR
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population sizes for those pieces (weighted by their lengths) if all of the
pieces that were combined had population sizes within 10% of the re-
sulting harmonicmean. Furthermore, computing the initial stationary
distribution of two-locus configurations, which depends on the most
ancient population size, is computationally expensive, and so after re-
ducing the number of pieces, the most ancient size was set to 19,067
for all populations. Computing the exact two-locus likelihoods re-
quiresO(n6) time, wheren is the sample size, and is too computationally
prohibitive for sample sizes in the hundreds for 26 populations. In pre-
vious work (23), we showed that downsampling approximate two-locus
likelihoods for a larger sample size, N, results in little loss in accuracy,
and these approximate likelihoodsmay be computed inO(N3) time and
downsampled in O(N3 × (N − n)) time as well. As such, we used this
approximation, withN= 256 for each population, downsampling to the
observed sample size, which ranged from n = 122 to n = 226 haploids.

Hyperparameter optimization
Our method has two important hyperparameters, namely, the win-
dow size w, which determines how far apart pairs of SNPs must be
before we ignore them, and the ℓ1 regularization penalty, l, that
determines the smoothness of resulting map. Because our method is
extremely fast, we were able to optimize these parameters for each
population to account for differences in sample size and demography.
For each population, we used msprime (59) to simulate 100 regions,
each of 1Mb in length, with a recombinationmap randomly drawn from
theHapMap recombinationmap (34) andwith sample sizematching the
observed sample size. On this dataset, we then ran our method with all
possible combinations of (w, l) ∈ {30,40,50,60,70,80,90} ×
{15,20,25,30,35,40,45,50}. Our method does not estimate a recombina-
tion rate before the first SNP or after the last SNP, so we took the esti-
mated recombination rate in the region between the first and last SNP
for each simulation and concatenated them together into a single vector,
and did the same with the true recombination maps under which we
had simulated.We then computed the Pearson correlation of these vec-
tors in both natural and log scale, and also the Spearman correlation; we
also computed these correlations at broader scales by taking our esti-
mates and dividing them into nonoverlapping windows of length 10
or 100 kb and concatenating the average recombination ratewithin each
window and doing the same to the true recombination maps. We also
computed the squared ℓ2 norm between the inferred recombination
maps and the true recombination maps in both natural and log scale.
We computed all of these quantities for each setting of the hyperpara-
meters. To choose the “best” hyperparameters, we looked at each mea-
sure of quality and ranked the hyperparameter settings for thatmeasure
(e.g., the hyperparameter setting that produced the smallest square ℓ2
norm in natural scale between the estimates and the truth would be
ranked 1 for that measure). We then chose the hyperparameter setting
that minimized the sum of these ranks over all of the measures we
considered. Non-African populations tended to have higher values of
l and lower values ofw thanAfrican populations, likely due to the lower
SNP density in non-African populations resulting from the out-of-
Africa bottleneck.

Comparison of recombination maps and
nucleotide diversity
To compare changes in nucleotide diversity and recombination rate, we
divided the genome into nonoverlappingwindows of size 1 kb. For each
window, we computed the average recombination rate and the average
proportion of pairwise nucleotide differences, pℓº fℓ(1 − fℓ), where fℓ is
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
the frequency of the derived allele at locus ℓ.We averaged only over sites
that were notmasked out as described above, and treated windows with
greater than half of their positions masked out as missing. For each pair
of populations, we then computed the Spearman correlation of the re-
combination rates across the windows, as well as the Spearman corre-
lation of the average value of p across windows. We repeated this
analysis for windows of size 10 kb, 100 kb, and 1 Mb, and the results
are plotted in fig. S3.

Prediction of PRDM9 binding sites and SFS construction
To predict PRDM9-A binding sites, we obtained empirical position
weight matrices (PWMs) from (2). In (2), a number of different motifs
are presented, but following that paper, we only used their motifs
Human1, …, Human7 as true PRDM9-A binding motifs. For
PRDM9-C binding sites, we obtained the PWMs from (62). These
PWMmatrices describe the probability pX(ℓ) of observing a nucleotide
X ∈ {A, C, G, T} for each position ℓ in the motif. To determine a cutoff
for whether to call a particular sequence as matching a particular
binding motif or not, we generated 10,000,000 random nucleotide
sequences by sampling each position independently, and drawing
A or T with probability 0.3 and C or G with probability 0.2, which
approximately matches the marginal distribution of nucleotides in the
human genome. We then computed the log-likelihood, log L of each
sequence by

logLðiÞ≔∑
M

ℓ¼1
log p

XðiÞ
ℓ
ðℓÞ

h i

whereXðiÞ
ℓ is the nucleotide at position ℓ in simulation i andM is the

length of the motif. We chose the 9,999,990th largest log-likelihood
as the cutoff for calling a motif. This is equivalent to an approximate
P value of 1 × 10−6.

We then called PRDM9-A alleles in each haploid sequence in the
1KG dataset on the hg38 genome build as follows. We considered only
diallelic SNPs where all individuals have reported genotypes. Sites with
more than two alleles or structural variants were treated as missing. In-
dividualswere treated as having the reference allele at all other positions.
Then, starting at the first base in the genome, we computed the log-
likelihood, as above, for eachmotif (or its reverse complement) starting
at that position, reporting log-likelihoods that are greater than the em-
pirical cutoff for that motif, and then moving to the next base and re-
peating. We skipped any starting points where any motif overlapped a
missing position. Instead of performing this for each haploid individu-
ally, we instead constructed all of the unique haplotypes in the dataset
that spanned the region from the starting position to the end of the lon-
gest motif and only computed the log-likelihood of each motif on these
unique haplotypes.

To construct the PRDM9-Abinding site SFS, we took these calls and
looked for starting positions where some individuals were called as
matching one of the PRDM9-A binding motifs, and other individuals
were not predicted to bind any PRDM9-A motif. We then treated
binding and nonbinding as the two alleles and constructed a standard
diallelic SFS. We also constructed SFSs for each population by restrict-
ing to only sites with a recombination rate inferred in that population
within some range. To insure that our results were due to PRDM9
binding and not due to other factors such as GC content in the motifs,
we also repeated the above procedure with shuffled PWMs obtained by
randomly permuting the positions of each PWM.
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Inference of selection coefficients
While a number of software packages exist to fit a selection coefficient to
an SFS [e.g., (63, 64)], there were a number of peculiarities about the
PRDM9 binding SFS that prevented us from using these previous
methods; we expected selection to act against PRDM9 binding alleles
regardless of whether they are ancestral or derived, and hence, we
wanted to “polarize” our SFS by considering the frequency of PRDM9
binding alleles, instead of the frequency of the derived allele or the fre-
quency of the minor allele as is usual. Yet, mutations may act to intro-
duce newPRDM9binding sites or to disrupt PRDM9binding,meaning
that newmutants may arise at either end of the SFS. To account for this
issue, we derived and implemented amethod to fit selection coefficients
for this particular setting.

Let t̂n ¼ ðt̂n;1;…; t̂n;n�1Þ be the observed PRDM9 binding SFS.
That is, t̂n;k is the number of segregating sites, where k individuals have
a haplotype that binds PRDM9 and n − k individuals have a haplotype
that does not bind PRDM9. As in previous methods (63, 64), we fit a
selection coefficient by maximizing a multinomial log-likelihood

logLmultº ∑
n�1

k¼1
t̂n;klogxn;kðs; qbind; qnonbindÞ ð1Þ

where xn, k(s, qbind, qnonbind) is the probability that a segregating site has
k binding alleles given a selection coefficient of s, a rate qbind of new
PRDM9 binding sites appearing via mutation, and a rate qnonbind of
all nonsegregating PRDM9 binding sites generating a new nonbinding
PRDM9 allele. As has been shown previously (65), we have

xn;kðs; qbind; qnonbindÞ ¼ Es;qbind;qnonbind
t̂n;k

∑n�1
ℓ¼1 t̂n;ℓ

" #

≈
Es;qbind ;qnonbind t̂n;k

� �
∑n�1

ℓ¼1Es;qbind ;qnonbind t̂n;ℓ
� �

¼ Es;1;qnonbind=qbind t̂n;k
� �

∑n�1
ℓ¼1Es;1;qnonbind=qbind t̂n;ℓ

� �
where the approximation is exact in the limit of small mutation rates,
and the final equality follows from the fact that absolute scaling of the
mutation rates only determines the total number of segregating sites
and not their relative proportions, causing amultiplicative factor to can-
cel in the numerator and denominator. Therefore, we only need to be
able to computeEs;1;f t̂n;k

� �
, where f = qnonbind/qbind. Assuming a pan-

mictic population, this expectation depends on the unscaled effective
population size history, h(t), as well as s and f.

We have thus far suppressed the dependence of this expectation on h
for notational convenience, but now definems;f

n;kðtÞ to beEs;1;f t̂n;k
� �

for
the population size history ~hðt′Þ ¼ hðt þ t′Þ. That is, we truncate the
population sizehistory at somepoint t and treat the resulting function as a
new population size history to compute the expectation. Furthermore,
definems;f

n ðtÞ≔ ms;f
n;1ðtÞ;…;ms;f

n;n�1ðtÞ

 �

. The idea behind our method
is to set up and solve a system of differential equations of the form

d
dt
ms;f

n ðtÞ ¼ g ms;f
n ðtÞ; t� 

Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
to obtainms;f
n ð0Þ, which is our desired expectation. In the case where s=

0, this system of equations turns out to be equivalent to the Moran
model (66) with a continuous injection of new mutants into classes at
the boundary, a result that follows from (67) and is further explored in
(68, 69). That is

d
dt
m0;f

n ðtÞ ¼ �ðMnðt; 0ÞÞT :m0;f
n ðtÞ � e1 � fen�1

where the minus signs arise from our convention of having time run
backward, ei is the ith basis vector, and Mn(t, s) ∈ Rn −1 × n −1 is the
well-known generator of theMoran process scaled by the population size

ðMnðt; 0ÞÞij ¼

� iðn� iÞ
hðtÞ ; if j ¼ i;

iðn� iÞ
2hðtÞ ; if j ¼ i� i;

iðn� iÞ
2hðtÞ ; if j ¼ iþ 1;

0; otherwise:

8>>>>>>>><
>>>>>>>>:

In the case where there is selection (s ≠ 0), there is no closed system
of differential equations exactly describing the evolution of this vector
(64, 67). Yet, it is known that theMoranmodel with selection converges
to theWright-Fisher diffusion with selection in the limit of large n (70).
We therefore approximate the dynamics with selection by the Moran
process with selection, and we compute these expectations for a larger
sample size and then downsample to our observed sample size. With
this approximation, we obtain the following system of equations

d
dt
ms;f

n ðtÞ≈� ðMnðt; sÞÞT ⋅ ms;f
n ðtÞ � e1 � fen�1

where

ðMnðt; sÞÞij ¼

� iðn� iÞ
hðtÞ � s� iðn� iÞ

n
; if j ¼ i;

iðn� iÞ
2hðtÞ þ s� iðn� iÞ

n
; if j ¼ i� i;

iðn� iÞ
2hðtÞ ; if j ¼ iþ 1;

0; otherwise:

8>>>>>>>><
>>>>>>>>:

Now that we have set up the system of differential equations, we
show how to efficiently solve it.We assume that h is piecewise constant,
with sizes h1,…, hT + 1 and breakpoints t1,…, tT, setting t0≔ 0 for ease
of notation. For convenience, denote the lengths of the pieces as D1,
D2,…,DTwhereDk = tk − tk − 1 for k > 1, and also let ~Mnðk; sÞ≔Mnðt; sÞ
for any t in the kth epoch.We begin at the most ancient interval, which
runs from tT to∞ and has size hT + 1. Since this epoch is infinitely long,
we can computems;f

n ðtTÞ by finding the stationary distribution of this
process. That is, we solve

0 ¼ �ð ~MnðT þ 1; sÞÞT ⋅ms;f
n ðtTÞ � e1 � fen�1

for ms;f
n ðtTÞ, using a sparse linear solver implemented in SciPy (71).
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Now, assume that we have computedms;f
n ðtkÞ. We may compute

ms;f
n ðtk�1Þ by separately considering what happens to mass already

in the system and what happens to mass that is injected during this ep-
och. Mass already in the system simply evolves according to ~Mðk; sÞ, so
the contribution of existing mass is expfDkð ~Mnðk; sÞÞTg⋅ ms;f

n ðtkÞ,
which can be efficiently computed using expm_multiply imple-
mented in SciPy (72). For newly arising mass, we further condition
on when the mass arose, resulting in

∫
Dk

0 exp tð ~Mnðk; sÞÞT
n o

⋅ e1 þ fen�1ð Þdt
¼ ð ~Mnðk; sÞÞ�Texp Dkð ~Mnðk; sÞÞT

n o
ðe1 þ fen�1Þ

which can be computed efficiently, again with expm_multiply and a
sparse linear solver to avoid needing to invert a matrix. Combining, this
results in

ms;f
n ðtk�1Þ ¼ expfDkð ~Mnðk; sÞÞTg⋅ms;f

n ðtkÞ þ
ð ~Mnðk; sÞÞ�TexpfDkð ~Mnðk; sÞÞTg⋅ ðe1 þ en�1Þ

and iterating this computation, we arrive atms;f
n ð0Þ as desired. Last, to

find selection coefficients, we can numerically maximize Eq. 1 using
Powell’s direction set method (73) as implemented in SciPy.

To minimize the effect of using the Moran process with selection to
approximate theWright-Fisher process, we used a larger sample size of
256 and then downsampled to the desired sample size. We performed
this for each population for each window of recombination rates, using
the decimated smc++ inferred population sizes.

Wewere concerned about potential biases arising from eithermisspe-
cification of the population sizes or differences in background selection
due to differences in the recombination rate. To alleviate this bias, we also
computed selection coefficients using the shuffledPRDM9bindingmotifs
as a putatively neutral control. We constructed these as described above
for the original PRDM9 PWMs. Our reported debiased estimate for a
given recombination bin and population are then the selection coeffi-
cients inferred for thePRDM9bindingSFSminus the selection coefficient
inferred for the shuffled motif SFS. Because of the results shown in
Fig. 2C,we restrictedour selection analyses and the analyses in subsequent
sections to the two motifs that showed substantially elevated recombina-
tion rates relative to their shuffled versions: Human2 and Human6.

Data processing and analysis for determinants of
recombination rate variation
For the analyses presented in Fig. 4 and fig. S4, we preprocessed the data
as follows. We first restricted our analyses to only sites satisfying the
previously mentioned mappability mask for which we inferred recom-
bination rates. Then, to partially alleviate issues of spatial dependency,
we subsetted these data by taking every 1000th element. Throughout,
we converted the population-scaled recombination rates inferred by
pyrho to per-generation rates by multiplying by m/q, where m is the
per-generation mutation rate (assumed to be 1.25 × 10−8) and q is
the population-scaled mutation rate (chosen to be 5 × 10−4). We
calculated the expected number of recombinations per chromosome
by averaging the subsetted datawithin each chromosome and thenmul-
tiplying by the chromosome length. For analyzing the subtelomeres, we
averaged all entries within the first 10 Mb of each chromosome to ob-
tain an average for the “left subtelomere” and the last 10 Mb for the
Spence and Song, Sci. Adv. 2019;5 : eaaw9206 23 October 2019
“right subtelomere.” We ignored the missing subtelomeric regions in
the acrocentric chromosomes 13, 14, 15, 21, and 22 and only presented
results for the right subtelomere for these chromosomes.

For PRDM9 binding, we would ideally use actual, measured
PRDM9-A binding sites (e.g., determined by ChIP-seq), but no such
dataset exists. Binding locations of the PRDM9-B allelewere determined
by ChIP-seq in (2), and binding locations of a PRDM9 variant were
inferred in the mouse genome using affinity-seq (74). Pratto and collea-
gues determined putative PRDM9-A binding sites by performing ChIP-
seq onDMC1, a protein recruited to double-strand breaks, in individuals
with different PRDM9 alleles (62). This approach is problematic for our
purposes because inferring PRDM9-A binding positions by their in-
duced double-strand breaks effectively conditions on those binding sites
having elevated recombination rates. We were interested in finding ge-
nomic features that modulate the effect of PRDM9 binding on recom-
bination rate, which would be impossible if we only included PRDM9
binding sites with high recombination rates. Ultimately, we labeled each
position as affected by PRDM9 binding if it is within 100 bp of a com-
putationally predicted PRDM9-A allele binding motif. Note that we
focused on PRDM9-Abecause that is the predominant allele in humans
and is primarily responsible for the historical recombinations we im-
plicitly used in our inference of the recombination maps.

When analyzing the effect of putative PRDM9binding or chromatin
status, we performed all our analyses in log space. In our benchmarking,
we found that pyrho produces errors that are approximately normally
distributed in log space, making the use of t tests, ANOVA, and linear
models more appropriate in log space. All statistical tests were per-
formed in R (75).

Comparison with previous recombination maps
We used LiftOver (76) to remap previously inferred recombination
maps to the current genome build (hg38). We compared our maps
with maps released with the 1KG project for CEU, CHB, and YRI
(15); the sex-averagedDECODE recombinationmap (28); theHapMap
recombinationmap (34); and the admixture-basedmaps reported by
Hinch et al. (26) and Wegmann et al. (27). We then computed cor-
relation (Pearson in natural and log scales, and Spearman, at various
spatial resolutions, as described above) between all pairs of maps.
The results are presented in fig. S8.

Effect of genome build
We inferred recombination maps on both the current genome build
(hg38) and the previous genome build (hg19) to explore the effect of
using LiftOver (76) to move recombination maps from one coordinate
system to another. This is common in practice, with, for example, the
DECODEmap being originally called on hg18 (28) but commonly used
on hg19 following LiftOver. There appears to be only a modest overall
effect: even at the single–base pair resolution, the Spearman correlation
between maps inferred on hg38 and those inferred on hg19 and lifted to
hg38 ranged from r = 0.986 to r = 0.998 across all populations. Similarly,
the Pearson correlation in log space varied from r = 0.984 to r = 0.998.
The Pearson correlation in natural scale was somewhat less reliable, how-
ever, ranging from r=0.474 to r=0.987, likely due to the extreme leverage
of hotspots in natural scale. The results are summarized in table S2.

Effect of background selection on inferred
recombination rates
To investigate the effect of background selection on our inferred recom-
bination rates, we downloaded a genome-wide measure of background
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selection (B-statistics) from (77). B-statistics range in value from 0 to
1000 and reflect the relative loss in genetic diversity as a result of
background selection, with 0 being a total loss in diversity and 1000
representing the truly neutral level of genetic diversity. The available
B-statistics are reported in terms of coordinates on hg18, so we used
LiftOver (76) to remap the coordinates to hg38.We took the data pro-
cessed for analyzing determinants of recombination rate variation and
further restricted to sites with reported B-statistics. We repeated the
analyses of the effect of putative PRDM9 binding and chromatin state
while controlling for background selection by including the B-statistics
as linear covariates. The results are presented in fig. S5. While we
observe a high correlation between the inferred recombination rate
and B-statistics (Spearman’s r = 0.375, P < 2.2 × 10−16), the overall
impact of chromatin state and PRDM9 binding remains comparable
whether or not we control for B-statistics.

Note that B-statistics were originally computed by fitting distribu-
tions of selection coefficients for exonic and nonexonic regions to ob-
served patterns of diversity (77). The impact of these distributions on
the diversity at linked neutral sites depends on the genetic distance be-
tween the selected site and the neutral site, and hence requires knowl-
edge of the fine-scale recombination map. Due to this circularity, it is
difficult to determinewhether the observed correlation betweenB-statistics
and our inferred recombination rates is due to lower recombination
rates directly causing higher levels of background selection (and hence
lower inferred recombination rates being associated with lower B-
statistics), or if higher levels of background selection result in a lower
apparent effective population size, resulting in underestimated re-
combination rates. It may be possible to disentangle background se-
lection from changes in local recombination rate by jointly inferring
B-statistics and fine-scale recombination rates, but we leave such an
undertaking for future work.

Results on unphased data
To test the performance of our method on unphased data, we per-
formed the hyperparameter optimization described above for each
population with genotype data from diploid individuals. We then
tested our method on the same benchmarking data mentioned earlier
using the optimal hyperparameters for CEU. The results are presented
in fig. S8, which also shows a scatterplot of the inferred recombination
rates compared to the true recombination rates for both phased and
unphased data. Both settings are fairly unbiased for all but the smallest
recombination rates. For the most part, inference using unphased in-
dividuals results in performance indistinguishable from that on per-
fectly phased data. As such, we recommend using genotype calls
when phasing may be inaccurate.
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