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ABSTRACT General genealogical processes such as L- and J-coalescents, which respectively model multiple and simultaneous
mergers, have important applications in studying marine species, strong positive selection, recurrent selective sweeps, strong bottle-
necks, large sample sizes, and so on. Recently, there has been significant progress in developing useful inference tools for such general
models. In particular, inference methods based on the site frequency spectrum (SFS) have received noticeable attention. Here, we
derive a new formula for the expected SFS for general L- and J-coalescents, which leads to an efficient algorithm. For time-homogeneous
coalescents, the runtime of our algorithm for computing the expected SFS is Oðn2Þ; where n is the sample size. This is a factor of n2 faster
than the state-of-the-art method. Furthermore, in contrast to existing methods, our method generalizes to time-inhomogeneous L- and
J-coalescents with measures that factorize as LðdxÞ=zðtÞ andJðdxÞ=zðtÞ; respectively, where z denotes a strictly positive function of time.
The runtime of our algorithm in this setting is Oðn3Þ:We also obtain general theoretical results for the identifiability of the Lmeasure when
z is a constant function, as well as for the identifiability of the function z under a fixed J measure.
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WHEN summarizing sequence data from n individuals,
a natural and often-used statistic is the site frequency

spectrum (SFS), t̂n ¼ ðt̂n;1; . . . ; t̂n;n21ÞT ; where t̂n;k is simply
the number of sites at which k of n individuals carry the
mutant (or the derived) allele. Despite being only n2 1 num-
bers, the SFS still contains a surprising amount of information
about the history and structure of the population from which
the individuals were sampled. Indeed, for neutrally evolving
populations that are well modeled by Kingman’s coalescent
(Kingman 1982), the expected value of the SFS was first
computed for populations of constant size (Fu 1995), ex-
tended to populations of variable size (Griffiths and Tavaré
1998; Polanski et al. 2003; Polanski and Kimmel 2003), and
has since been used as a statistic for demographic inference in
numerous studies (e.g., Nielsen 2000; Gutenkunst et al.
2009; Coventry et al. 2010; Gravel et al. 2011; Excoffier

et al. 2013; Bhaskar et al. 2015; Kamm et al. 2015; Gao and
Keinan 2016).

Yet not all populations are well modeled by Kingman’s
coalescent. In fact, Kingman’s coalescent can be viewed as
a special case of a broader class of coalescent processes called
L-coalescents (Pitman 1999; Sagitov 1999). While King-
man’s coalescent permits only pairwise mergers of lineages,
L-coalescents allow two or more lineages to merge simulta-
neously in a single coalescence event. Such events arise when
a single individual has many offspring (Möhle and Sagitov
2001; Eldon and Wakeley 2006), under models of recurrent
selective sweeps (Durrett and Schweinsberg 2004, 2005), in
populations undergoing continuous strong selection (Neher
and Hallatschek 2013; Schweinsberg 2015), and in many
other models. L-Coalescents can further be seen as special
cases of a broader class of coalescents called J-coalescents
(Schweinsberg 2000). In J-coalescents, more than one
merger event can occur simultaneously, resulting in simulta-
neous multiple mergers. While J-coalescents have received
less attention than L-coalescents in the literature, they still
arise in certain models of selection (Huillet 2014), models of
selective sweeps (Durrett and Schweinsberg 2005),models with
repeated strong bottlenecks (Birkner et al. 2009), and for certain
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diploid mating models (Möhle and Sagitov 2003). Also, since
J-coalecents generalize L-coalescents, any results presented
about J-coalescents immediately pertain to L-coalescents.

More formally, time-homogeneous J-coalescents are gov-
erned by a measure JðdxÞ on the set fðx1; x2; . . .Þ : x1 $
x2 $⋯$ 0;

PN
i¼1xi # 1g Furthermore, we consider time-

inhomogeneous J-coalescents with measures that decom-
pose into a time-independent partJðdxÞ and a strictly positive
function z : ℝ$ 0/ℝþ of time, where zðtÞ represents (for his-
torical reasons) the inverse intensity. That is, the coalescent is
now governed by the measure JðdxÞ=zðtÞ: For example, for
Kingman’s coalescent,JðdxÞ ¼ d0ðdxÞ; the point mass at zero,
and zðtÞ corresponds to the scaled effective population size at
time t. For other models, zðtÞ does not necessarily correspond
to the population size, but has an interpretation specific to
the model. For example, Neher and Hallatschek (2013) show
empirically that the rate of coalescence events in a model of
continuous strong selection is a nonlinear function of the
population size and the first two moments of the distribu-
tion of mutational effects. For a review of the mechanics
of L-coalescents, see Pitman (1999) and for a review of
J-coalescents, see Schweinsberg (2000). For an alternative
perspective, see Donnelly and Kurtz (1999) and Birkner et al.
(2009) for a lookdown construction of particle systems with
general reproduction mechanisms.

As mentioned above, the expected SFS for Kingman’s co-
alescent is well understood and can, in fact, be computed for
an arbitrary z in Oðn2Þ time (Polanski and Kimmel 2003). For
L- and J-coalescents, however, the expected SFS can be com-
puted only for constant z and the method for L-coalescents
takes Oðn4Þ time (Birkner et al. 2013a) and the method for
J-coalescents takes time exponential in n as a sum over parti-
tions of the first n numbers must be performed (Blath et al.
2015). Here we present a method that can compute the
expected SFS for time-inhomogeneous L- and J-coalescents
with arbitrary z inOðn3Þ time. In the case where z is a constant
function, our method can compute the expected SFS in Oðn2Þ
time given the rate matrix Q of the ancestral process, which is
definedmore precisely below.We also prove some results about
the sample size needed to make L identifiable for popular
classes of L measures for constant z, as well as results about
the sample size needed tomake z identifiable for a fixedJðdxÞ:

There has also been some related work on determining the
asymptotic behavior of the expected SFS as n/N: In this
setting, Berestycki et al. (2007, 2014) derive some simple for-
mulas for time-homogeneous L-coalescents that come down
from infinity. For finite n, however, these asymptotic formulas
can be rather inaccurate. Indeed, even for n ¼ 10; 000; Birkner
et al. (2013a) show that for some L-coalescents, there is a siz-
able discrepancy between the asymptotic formulas and the SFS
obtained by simulation, highlighting the need for finite-sample
calculations. Nevertheless, such asymptotic results highlight
some interesting properties of L-coalescents and are reviewed
in Berestycki (2009).

The remainder of this article is organized as follows. We
first present our main results about the computation of the

SFS for time-inhomogeneous coalescents and discuss the prac-
tical runtime of our implementation. We also investigate the
variation in the empirical SFS and study the ability to infer the
underlying model, using the empirical SFS. Then, we prove
some identifiability results about general coalescents. We con-
clude with a discussion on the implications of our results.

Main Theoretical Results on the Expected SFS

Here we present our theoretical results on the expected SFS for
a general J-coalescent with a measure of the form JðdxÞ=zðtÞ:
These results lead to an Oðn3Þ-time algorithm for computing the
expected SFS and can be improved to Oðn2Þ if z is a constant
function. Briefly, we use subsampling arguments to show that the
expected SFS tn ¼ E½t̂n� can be computed from
an :¼ ðETMRCA

2 ; . . . ;ETMRCA
n ÞT ; where ETMRCA

k denotes the
expected time to the most recent common ancestor for sample
size k 2 f2; . . . ; ng: Then, we show how to compute an; using
a spectral decomposition of the rate matrix Q of the ancestral
process (also known as the block-counting process) of the time-
homogeneous coalescent corresponding to JðdxÞ: More
specifically,Q is a lower triangular matrix, where ðQÞij is the instan-
taneous rate at which i unlabeled lineages merge to form j unla-
beled lineageswhen z[ 1: For example, for Kingman’s coalescent,

ðQÞij ¼

8>>>>>><
>>>>>>:

�
i
2

�
; j ¼ i2 1;

2

�
i
2

�
; j ¼ i;

0; otherwise:

Using this notation,we are now ready to state ourmain result.
The rest of this section provides lemmas that contain formulas
for the matrices in Theorem 1, as well as a proof of those
lemmas and Theorem 1.

Theorem 1. Consider an arbitrary time-inhomogeneous
J-coalescent governed by a measure JðdxÞ=zðtÞ; such that
the expected time ck;k to the first coalescence for a sample of size
k is finite for k 2 f2; . . . ; ng: Let cn ¼ ðc2;2; . . . ; cn;nÞT : Then,
there exists a universal matrix A 2 ℝn213n21 that does not de-
pend on the measure and a matrix L 2 ℝn213n21 that depends
on J but not z, such that

tn ¼ u

2
Aan and an ¼ Lcn;

where u=2 is the population-scaled mutation rate. Furthermore,
this allows tn to be computed in Oðn3Þ time.

Computing the matrix L in Theorem 1 is costly. For time-
homogeneous coalescents, it is possible to compute an di-
rectly, resulting in the following corollary:

Corollary 1. In the same setting as Theorem 1, if z is a con-
stant function, then tn can be computed in Oðn2Þ time.

In what follows, Lemmas 1 and 2 provide formulas to com-
pute the universal matrix A; while Lemmas 3 and 4 provide
formulas to compute L; which is related to the spectral
decomposition of the rate matrix Q: The expected first

1550 J. P. Spence, J. A. Kamm, and Y. S. Song

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/202/4/1549/5930238 by guest on 08 April 2021



coalescence times cn ¼ ðc2;2; . . . ; cn;nÞT can be computed as
(Polanski and Kimmel 2003; Bhaskar et al., 2015)

ck;k¼
Z N

0
ℙftime  of   first  coalescence  for  k  individuals. tgdt

¼
Z N

0
eðQÞkk

R t

0
ð1=zðsÞÞdsdt:

Note that since A and L do not depend on z, the SFS depends
on time and the inhomogeneity of the coalescent process only
through the first coalescence times cn:

Lemma 1. Let gn :¼ ðt2;1; t3;2; . . . ; tn;n21ÞT denote the anti-
singleton entries (i.e., entries where exactly one individual has
the ancestral allele and all other individuals have the derived
allele) of the SFS for samples of sizes 2; . . . ; n: Then,

tn ¼ Bgn;

where the entries of B 2 ℝn213n21 are given by

ðBÞij ¼

8>>><
>>>:

ð21Þi2j 1
jþ 1

�
n2 i2 1

j2 i

��
n
i

�
; i# j;

0; i. j:

Proof. We use induction to show that

tn;i ¼
Xn21

j¼i
ð21Þi2j 1

jþ 1

�
n2 i2 1

j2 i

��
n
i

�
tjþ1; j: (1)

Using exchangeability and a subsampling argument similar to
that of Kamm et al. (2015, lemma 2), we obtain, for k. lþ 1;

tk21;l ¼
lþ 1
k

tk;lþ1 þ
k2 l
k

tk;l; (2)

whichfollowsfromremovingan individualuniformlyatrandom
from a sample of size k. Now, define the level of tn;i as n2 i and
note that (1) holds for level 1, i.e., for tl;l21 on the left-hand
side. Assume that (1) holds for level n2 i2 1: Then,

tn;i¼ n
n2i

tn21;i2
iþ1
n2i

tn;iþ1

¼ n
n2i

"Xn22

j¼i

ð21Þi2j 1
jþ1

�
n2i22

j2i

��
n21

i

�
tjþ1; j

#

2
iþ1
n2i

Xn21

j¼iþ1

ð21Þiþ12j 1
jþ1

�
n2i22

j2i21

��
n

iþ1

�
tjþ1; j

2
4

3
5

¼
�
n
i

�(
1

iþ1
tiþ1;iþð21Þn212i1

n
tn;n21

þ
Xn22

j¼iþ1

ð21Þi2j 1
jþ1

��
n2i22

j2i

�
þ
�
n2i22

j2i21

��
tjþ1; j

)

¼
�
n
i

�Xn21

j¼i

ð21Þj2i 1
jþ1

�
n2i21

j2i

�
tjþ1; j;

where the first equality holds by the recursion (2) and the
second equality holds by the inductive hypothesis, by noting
that tn21;i and tn;iþ1 are both one level below tn;i:

h

The following lemma relates gn to an :
Lemma 2. Let gn; an; and u be defined as above. Then,

gn ¼ u

2
Can;

where C 2 ℝn213n21 is bidiagonal with ðCÞk;k21 ¼2ðkþ 1Þ
and ðCÞkk ¼ kþ 1 for k 2 f2; . . . ; n2 1g; and ðCÞ11 ¼ 2:

Proof. As in the Proof of Lemma 1, we employ a subsampling
argument. Consider a sample of size kþ 1: The only way that
a subsample of size k canhave adifferent time to themost recent
commonancestor is if the removed individual is a singleton after
all of the other lineages have coalesced. The probability that we
remove that singleton to form our subsample is 1=ðkþ 1Þ:
Then, the expected amount of time during which there is one
singleton and all of the other individuals have coalesced scaled
by the mutation rate is exactly the antisingleton entry. Thus,

1
kþ 1

tkþ1;k ¼
u

2

�
ETMRCA

kþ1 2ETMRCA
k

�
for k. 1: When k ¼ 1; there are only two lineages, so the
total branch length is the antisingleton entry. Thus,
t2;1 ¼ ðu=2Þ2ETMRCA

2 : Rewriting this as a matrix equation
for k 2 f1; . . . ; n2 1g completes the Proof.

h

By combining Lemmas 1 and 2, we obtain the universal
matrixA ¼ BC:Wenowshowhowto compute theJ-dependent
matrix L: First, we establish the following result on the
decomposition of the rate matrix Q; this result was also
obtained by Möhle and Pitters (2014, equation 2.3) for the
Bolthausen–Sznitman coalescent.

Lemma 3. Fix an arbitraryJ-coalescent with li 6¼ lj for i 6¼ j;
where li :¼

Pi21
k¼1ðQÞik ¼ 2ðQÞii: Let Q 2 ℝn3n denote the rate

matrix of the ancestral process corresponding toJðdxÞ (that is, the
process counting the number of extant lineages at time t). Then,

Q ¼ UEU21;

where ðEÞij ¼ dijðQÞii; with dij being the Kronecker delta that
equals 1 if i ¼ j and 0 otherwise, and

ðUÞij ¼

8>>>>><
>>>>>:

1; i ¼ j;

1
li 2 lj

Xi21

k¼j

ðQÞikðUÞkj; i. j;

0; otherwise:

Proof. By the construction of U;
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ðUÞijðQÞjj ¼
Xi
k¼j

ðQÞikðUÞkj;

which implies that UE ¼ QU: Then, since U is triangular and
has strictly positive diagonal entries, it is invertible. There-
fore, Q ¼ UEU21:

h

The following result relates an :¼ ðETMRCA
2 ; . . . ;ETMRCA

n ÞT
and cn ¼ ðc2;2; . . . ; cn;nÞT:

Lemma 4. Let an and cn be defined as above. Fix an arbi-
traryJmeasure and a strictly positive function z. Now consider
a time-inhomogeneous coalescent governed by JðdxÞ=zðtÞ: If
ck;k ,N; for 2# k# n; then

an ¼ 2ðUDÞ2:n;2:ncn;

where D 2 ℝn3n is the diagonal matrix diagð½U21��;1Þ; with
½U21��;1 denoting the first column of U21; and ðUDÞ2:n;2:n
denotes the submatrix of UD in rows and columns 2 through n.

Proof. Note that ETMRCA
k ¼ RN0 ℙfTMRCA

k . tgdt: Therefore,

ETMRCA
k ¼

Z N

0
ℙ
�
TMRCA
k . t

	
dt ¼

Z N

0

Xk
l¼2

�
eQ
R t

0
ð1=zðsÞÞds

�
kl
dt

¼
Z N

0

Xn
l¼2

�
eQ
R t

0
ð1=zðsÞÞds

�
kl
dt

¼
Z N

0

Xn
l¼2

�
UeE

R t

0
ð1=zðsÞÞdsU21

�
kl
dt;

where the third equality follows from the fact that Q is lower
triangular and hence so is its exponential. Now, since
U is lower triangular, its inverse is as well. Therefore,

we may ignore the value of ½eE
R t

0
ð1=zðsÞÞds�1;1: Letting

FðtÞ :¼ eE
R t

0
ð1=zðsÞÞds but with F1;1ðtÞ :¼ 0; note thatRN

0 FðtÞdt ¼ diagð0; cnÞ: Then we have

ETMRCA
k ¼

Z N

0

Xn
l¼2

h
UFðtÞU21

i
kl
dt

¼
Xn
l¼2

½U  diagð0; cnÞU21�kl:

Now, note that ðUÞi;1 ¼ 1 for all i by Lemma 3 and induction. This
implies

Pn
l¼1½U21�il ¼ di1; or

Pn
l¼2½U21�il ¼ di1 2 ½U21�i1:Using

this identity, we can rewrite the above expression for ETMRCA
k as

ETMRCA
k ¼ 2

Xn
j¼2

h
ðUDÞ2:n;2:n

i
k21; j

cj; j;

where D ¼ diagð½U21��;1Þ: Collecting these equations over
k 2 f2; . . . ; ng in matrix form leads to the desired result.

h

Using Lemma 4, we now see that the matrix L from Theo-
rem 1 is simply2ðUDÞ2:n;2:n: Lemma 3 provides a recursion to
compute U; and D may be computed by noting that
ðU21Þ11 ¼ 1 and then since UU21 ¼ I; we have

U21
i1 ¼ 2

Xi21

j¼1

ðUÞijðU21Þj1:

Proof of Theorem 1. Combining Lemmas 1, 2, and 4, we
obtain the equations in Theorem 1. For the runtime, note
that each of the Oðn2Þ entries of U requires OðnÞ computa-
tions, and so computing U is Oðn3Þ: The matrices compos-
ing A are known in closed form, however, and constructing
D requires filling only OðnÞ entries, each requiring OðnÞ
computations for a total of Oðn2Þ: To then obtain the SFS
from cn simply requires iterated matrix vector products
taking Oðn2Þ time. The overall procedure thus requires
Oðn3Þ:

h

Lemma 5. For coalescents of the formJðdxÞ=zðtÞ where z is
a constant function, an can be computed recursively from cn and
Q as follows:

ETTMRCA
2 ¼ c2;2

ETTMRCA
k ¼ ck;k þ

Xk21

l¼2

ðQÞkl
lk

ETTMRCA
l ; for  k. 2:

Proof. The formulas follow immediately from the homogene-
ity of the process, recursing on the number of individuals, and
noting that the probability that the first coalescence event for
a sample of size k results in k lineages merging down to l
lineages is ðQÞkl=lk:

h

Proof of Corollary 1. Use Lemma 5 to compute an in Oðn2Þ
time. Then, tn ¼ Aan by Theorem 1, which also takes Oðn2Þ
time to compute.

h

Remark 1. Other than computing U; the algorithm pre-
sented in Theorem 1 is Oðn2Þ: Thus, for the Bolthausen–Sznitman
coalescent (Bolthausen and Sznitman 1998) or Kingman’s co-
alescent, where U is known in closed form (Möhle and Pitters
2014, theorem 1.1 and appendix), the SFS can be computed in
Oðn2Þ time even for nonconstant z.

Remark 2. The above results can easily be extended to a co-
alescent where both z and JðdxÞ depend on t, as long as JðdxÞ
is piecewise constant. For example, in the recent past the pop-
ulation may evolve according to a b-coalescent, whereas for t
greater than some t0 the population may evolve according to
Kingman’s coalescent. By setting z appropriately in Theorem 1,
one may obtain a “truncated SFS” (Kamm et al. 2015) for each
different JðdxÞ: Then, using the truncated SFS for each epoch
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and the same machinery as in Kamm et al. (2015), one may
compute the full SFS. The same techniques also allow one to
consider multiple populations, with each population perhaps
evolving according to its own J measure.

Numerical Results

We implemented Theorem 1 and Corollary 1 in Mathematica,
and the notebook is available upon request. We can compute
the SFS for an arbitrary coalescent for a sample of size
n ¼ 100 in �1 sec and a sample of size n ¼ 300 in a matter
of minutes on a laptop computer, which is orders of magni-
tude faster than the .1 hr reported for a sample size of
n ¼ 100 using the current state-of-the-art method (Blath
et al. 2015). Furthermore, Blath et al. (2015) consider only
specific Jmeasures where the number of simultaneous mul-
tiple mergers is restricted. Our method has the same runtime
for all J measures (after computing the rate matrix and
the vector of first coalescence times). See Figure 1 for
runtime vs. sample size. Furthermore, as noted above, if
the spectral decomposition of the rate matrix Q is known,
then the algorithm is Oðn2Þ: We also present runtimes for
the Bolthausen–Sznitman coalescent [which has a closed-
form solution for the spectral decomposition (Möhle and
Pitters 2014)] in Figure 1.

As long as the rate matrixQ of the ancestral process can be
found exactly, our method is numerically stable. This is the
case for popularL-coalescents such as point-mass coalescents
and b-coalescents, as well as point massJ-coalescents. If the
rate matrix must be evaluated numerically, however, high-
precision computation may be needed to avoid potential nu-
merical problems due to catastrophic cancellation.

Using simulations, we now investigate the variation in the
empirical SFS across independent realizations of the coales-
cent process and study the ability to infer the underlying
model, using the empirical SFS. We consider three different
z’s, illustrated in Figure 2. Due to the association with pop-
ulation sizes in the case of Kingman’s coalescent, we refer to z
as the history or population size history. However, we caution
that depending on the finite population size model, zmay not
represent the population size, but some other biologically
relevant parameter.We consider a constant size history, a bot-
tleneck history that undergoes a temporary 10-fold size re-
duction, and a growth history with repeated population
doublings. For each z, we consider bð22a;aÞ-coalescents
with a 2 f1; 1:5; 2g: Note that a ¼ 1 corresponds to the
Bolthausen–Sznitman coalescent, while a ¼ 2 corresponds
to the Kingman coalescent. For each of the nine distinct val-
ues of ðz;aÞ;we simulatedm ¼ 1000 independent trees with
n ¼ 20 leaves.

In Figure 3, we examine the observed variation in branch
lengths across independent realizations of the coalescent pro-
cess, from which we can deduce the variation in the observed
SFS. Specifically, assume that each tree sampled from the co-
alescent process has the same mutation rate, and, without loss
of generality, assume that time has been scaled such that the

mutation rate is 1. Let ~tn;k be the sum of branch lengths with
k leaves and recall that t̂n;k is the kth entry of the empirical SFS
on the n observed individuals. Then, ℙðt̂nj~tnÞ � Poissonð~tnÞ;
andE½~tn� ¼ tn: In Figure 3, we plot ~tn;k for each simulated tree,
as well as its expected valuemn;k: Defining s

2
n;k :¼ Varð~tn;kÞ for

this case of m ¼ 1; we also plot an estimate of the standard

deviation ŝn;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê½~t2n;k�2 t2n;k

q
; where Ê is the empirical ex-

pectation. Now, if we sum the branch lengths and mutations
over m independent trees [so then E½~tn;k� ¼ mmn;k and
Varð~tn;kÞ ¼ ms2

n;k], then mn;k and s2
n;k describe the limiting

behavior of both ~tn;k and t̂n;k as m/N : by the central
limit theorem, ð1= ffiffiffiffi

m
p Þ ð~tn;k 2 tn;kÞ/d Nð0;s2

n;kÞ and

ð1= ffiffiffiffi
m

p Þðt̂n;k 2 tn;kÞ/d Nð0;s2
n;k þmn;kÞ:

A recent inconsistency result (Koskela et al. 2015, theorem
1) shows that a L measure cannot be inferred from a single
tree (m ¼ 1), even as n/N: Indeed, we see in Figure 3 that
the branch lengths ~tn;k of a single tree can deviate substan-
tially from tn;k: For most k (say, k$ 5), typically ~tn;k ¼ 0
or ~tn;k � mn;k; given a single tree. That is, for a single
tree, branches subtending more than a few leaves are
either not observed or much larger than the expected
branch length. However, smaller k (especially the singletons,
k ¼ 1) have smaller relative standard deviation sn;k=mn;k
and thus will tend to have lower relative error
ðt̂n;k 2 tn;kÞ=tn;k � Nð0; ðs2

n;k þ mn;kÞ=mm2
n;kÞ as m increases.

In the case of Kingman’s coalescent, z is inferred
by minimizing the Kullback-Leibler (KL) divergence between
a normalized version of the empirical SFS and a normalized
version of the expected SFS (e.g., Bhaskar et al. 2015, equa-
tion 10). Recall that the KL divergence, DKLðF1∥F2Þ between
two discrete probability distributions, F1 and F2 isP

iF1ðiÞlogðF1ðiÞF2ðiÞÞ where 0logð0Þ is defined to be 0. We

Figure 1 Runtime result (in seconds). Theorem 1 was used to compute
the SFS for the time-homogeneous Bolthausen–Sznitman coalescent. The
solid line uses Lemma 3 to compute the spectral decomposition of Q
resulting in a cubic runtime. The dashed line uses the closed-form repre-
sentation of the spectral decomposition of the Bolthausen–Sznitman co-
alescent (Möhle and Pitters 2014, theorem 1.1) to compute the SFS in
quadratic time. The dotted line uses Corollary 1, which is also quadratic.
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investigate how KL divergence behaves as a function of the
number m of independent trees simulated in the case of
L-coalescents. Let tðz;aÞn be the expected SFS under model
ðzðtÞ;aÞ and ~tðz;aÞn ðmÞ the corresponding branch lengths
summed over the first m simulated trees. Define
Pðz;aÞðkÞ}tðz;aÞn;k as the true probability distribution of derived
alleles under scenario ðzðtÞ;aÞ and ~P

ðz;aÞ
m ðkÞ} ~t

ðz;aÞ
n;k ðmÞ as the

conditional distribution of derived alleles, given the first m
trees simulated under ðzðtÞ;aÞ: In Figure 4, we plot the KL
divergence DKLð~Pðz1;a1Þ

m ∥Pðz2;a2ÞÞ as a function of m, for every
ðz1ðtÞ; z2ðtÞ;a1;a2Þ considered above (that is, z is constant,
bottleneck, or growth, and a is 1, 1.5, or 2). In this case,
we see that minimizing DKL identifies the true scenario
ðz1ðtÞ;a1ðtÞÞ ¼ ðz2ðtÞ;a2ðtÞÞ with access to only a moderate
number of independent trees (between 10 and 100).

Figure 4 is encouraging, as not too many independent
trees are needed to distinguish between the different scenar-
ios ðzðtÞ;aÞ: Unfortunately, in some cases it may be impos-
sible to even sample two independent trees (J. Koskela,
personal communication). For example, in the model of
Birkner et al. (2013b), a multiple-merger event happens over
a single “generation,” which can cause the multiple merger
to affect unlinked sites, resulting in correlated coalescence
times. However, in other models, multiple-merger events
may affect the genome only locally, and thus trees from un-
linked sites are independent. For example, in the selective
sweep model of Durrett and Schweinsberg (2005), multiple
mergers are caused by selective sweeps taking place over
OðlogðNÞÞ “generations,” and a site experiences a multiple
merger if rN logð2NÞ=sN ¼ Oð1Þ; where N; sN ; rN respectively
parameterize the population size, selection strength, and re-
combination distance to the selected site. Thus, the indepen-
dence of unlinked trees is not necessarily determined by the
L or J measure itself, but instead by the prelimiting model.

Identifiability Results

Before attempting to infer z orJ in practice, it is important to
know whether such inference is possible using the SFS. For
instance, when inferring z, if two different functions z1 and z2

produce the same SFS, then it is impossible to distinguish
between the two using only the SFS. In such a case, we say
that z is not identifiable. For Kingman’s coalescent if one
allows z to be an arbitrary positive function that produces
a finite SFS, then z is not identifiable (Myers et al. 2008). z
is identifiable in the case of Kingman’s coalescent, however, if
one restricts z to be from a set of biologically realistic func-
tions (technically, a set of functions with only a finite number
of oscillations) (Bhaskar and Song 2014, theorem 11). We
show that a similar result holds for all coalescents of the form
JðdxÞ=zðtÞ where JðdxÞ is fixed.

In general it is impossible to inferJ from the SFS ifJ is not
restricted. There has been some interest, however, in the case
of distinguishing between a subset of L-coalescents (Eldon
et al. 2015).We prove some results about the identifiability of
the measure for various subsets of L measures when z is
a constant function. We also consider the question posed by
Eldon et al. (2015) of whether the SFS can distinguish be-
tween exponential growth under Kingman’s coalescent and
a class of L-coalescents with constant z, and we show that
indeed it is possible to distinguish between these cases with
a surprisingly small number of samples. We note that our
identifiability results require knowledge of the exact expected
SFS, whereas Eldon et al. (2015) focus on the case where the
expected SFS is approximated using an empirical SFS, which is
what occurs in practice.

Throughout this section we assume that one has the exact
expected SFS (i.e., the object computed by Theorem 1).

Identifiability of z for fixed J measure

Before proceeding to the results and proofs, we first introduce
some notation. Let MKðFÞ denote the set of piecewise
defined functions with at most K pieces made from some
function family F : Furthermore, let S ðFÞ denote the sign-
change complexity of F : Informally, S ðFÞ is the supremum
of the number of times f1 2 f2 crosses 0 over functions
f1; f2 2 F ; which is related to the number of oscillations each
f 2 F is allowed to have [see Bhaskar and Song 2014, defi-
nition 4, for a formal definition of S ðFÞ]. We will also write
cJ
n for the number of 0 entries in ½U21��;1 in the spectral de-

composition of Q for a coalescent on n individuals governed
byJðdxÞ: Furthermore, denote by x the space of Jmeasures
such that ðQÞk;k21 . 0 for all k. That is, x is the set of J
measures where for any sample size there is positive proba-
bility of a single pairwise merger. If we are considering only
L-coalescents, then x contains all L measures except for d1;
the star coalescent. We now present our main identifiability
results and a conjectured bound on cJ

n :

Our main result on the identifiability of z is the following
theorem.

Theorem 2. For an arbitrary J-coalescent governed by the
measure JðdxÞ=zðtÞ where J 2 x is fixed, suppose S ðFÞ,N

and n$ 2K þ ð2K2 1ÞS ðFÞ þ cJ
n : Then for each expected

SFS tn there exists a unique z 2 MKðFÞ consistent with tn:

First, note that in the case of Kingman’s coalescent,cd0
n ¼ 0

for all n, and so in some sense, Kingman’s coalescent is

Figure 2 zðtÞ for three demographic scenarios: a constant size history,
a bottleneck history that undergoes a temporary 10-fold size reduction,
and a growth history with repeated population doublings. Note that the
y-axis is stretched by y ↦ logðyÞ:
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optimal in terms of the number of samples needed to ensure
that a certainmodel space is identifiable. For the Bolthausen–
Sznitman coalescent, c1

n ¼ 0 for all n, which follows from the
spectral decomposition (Möhle and Pitters 2014, theorem
1.1). For the point mass L-coalescent with mass at 1=2; for
n$ 5; all odd entries of ½U21��;1 are 0 and so c

d1=2
n . 0 for

n$ 5; thus implying that larger samples (relative to King-
man’s coalescent or the Bolthausen–Sznitman coalescent)
are needed for this coalescent to ensure that a given model
space is identifiable. We suspect that LðdxÞ ¼ d1=2 is the
worst case among all J-coalescents in x for identifiability,
resulting in the following conjecture:

Conjecture 1. For allJ 2 x and n$ 3, cJ
n # ðn2 1Þ=22 1:

If this conjecture is true, then the bound on the sample size
needed to have identifiability in Theorem 2 can be simplified
to n$ 2½2K þ ð2K2 1ÞS ðFÞ�
Identifiability of the L measure for a constant z

Wealso have the following results forL-coalescents about the
identifiability of the L measure.

Theorem 3. Consider the set of point-mass L-coalescents:
fdz : z 2 ½0; 1�g IfL is restricted to be in this set and n$ 3; then
the expected SFS tn uniquely determines L:

Theorem 4. Consider the set of b-coalescents:
fLðXÞ : X � bð22a;aÞ;a 2 ½1; 2Þg If L is restricted to be in
this set and n$ 3; then the expected SFS tn uniquely determines
L:

Theorem 5. Consider the set of coalescents fd0=ae2bt :

a;b.0g[fdz : z2½0;1�g[fLðXÞ : X �bð22a;aÞ;a2 ½1;2Þg;
that is, Kingman’s coalescent with exponential growth, point-
mass coalescents, or b-coalescents. If L is restricted to be in this
set and n$4; then the expected SFS tn uniquely determines L:

Theorem 5 gives a positive theoretical answer to the ques-
tion of whether the SFS can distinguish between exponential
growth and multiple-merger coalescents. Using the techni-
ques presented below, it is straightforward to obtain similar
results for other subsets of L-coalescents.

Proofs of the identifiability results

The following lemma is used in proving the theorems in this
section and may be of independent interest, as it shows that
given the SFS for n individuals one can compute the expected

time to most recent common ancestor for sample sizes
2; . . . ; n or vice versa.

Lemma 6. For all L- and J-coalescents, there is a bijection
between the expected SFS tn and the expected times an to the
most recent common ancestor.

Proof. Combine Lemmas 1 and 2 to see that tn ¼ BCan;
with B and C being universal. Then, since B is upper triangu-
lar and all of its diagonal entries are nonzero, it is invertible.
Furthermore, since C is bidiagonal and the diagonal entries
are all nonzero, it is also invertible. Therefore,BC is invertible
and since tn and an are related through an invertible matrix,
the transformation is bijective.

h

To prove Theorem 2 we use the following lemma.
Lemma 7. Let lk ¼ 2ðQkkÞ: For all J 2 x and all L other

than LðdxÞ ¼ d1ðdxÞ (i.e., the star coalescent), the sequence
ðlkÞk$ 2 is strictly increasing.

Proof. Consider a sample of size kþ 1 and a subsample of
size k. Without loss of generality, assume individual kþ 1 is
removed to produce the subsample. The time to the first
event is the same for both samples unless the first event
involves only individual kþ 1 and one lineage from
f1; . . . ; kg. That is, the total rate when there are kþ 1 line-
ages is equal to the total rate when there are k lineages plus k
times the rate at which exactly a particular pair of individuals
coalesce. Formally,

lkþ1 ¼ lk þ
k�

kþ 1
2

� ðQÞkþ1;k:

By assumption, ðQÞkþ1;k . 0; and so the total rates must be
strictly increasing.

h

We now prove Theorem 2. Our proof relies heavily on the
proof of the corresponding result for Kingman’s coalescent
(Bhaskar and Song 2014, theorem 11). We essentially show
that this setting satisfies the same hypotheses as the
Kingman’s coalescent case and then use that result to com-
plete our proof.

Figure 3 The distribution of the
branch length subtending k
leaves, for random trees under
a bð22a;aÞ-coalescent and
n ¼ 20: The solid line is the
expected value from Theorem 1.
We simulated 1000 independent
trees per scenario and their
branch length results are shown
as gray dots and box plots; the
dashed line denotes the esti-
mated standard deviation of the
distribution. Note the y-axis is
stretched by y ↦

ffiffiffi
y

p
: The mean

and standard deviation give the limiting behavior of t̂n;k for many independent trees, under the central limit theorem. For most k (say, k$5),
the branch length is usually 0 and has high variance relative to the mean. Thus t̂n;k will tend to have higher relative accuracy for the smaller entries k.
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Proof of Theorem 2. By Lemma 6, the SFS is uniquely de-
termined by an: Then, furthermore, note that from Lemma 3
thematrixU is invertible since it is triangular with all nonzero
entries along the diagonal. Then, by the same argument as in
Bhaskar and Song (2014, equation 12), we know that if the
model space is not identifiable, then for each k not corre-
sponding to a zero in D (contributing to cJ

n ), lk must be
the root of the Laplace transform of two different functions
in the model space. By Lemma 7, these are all distinct, result-
ing in n2cJ

n roots. Then, by taking n2cJ
n sufficiently large,

we obtain a contradiction via the generalized version of
Descarte’s rule of signs (Bhaskar and Song 2014, theorem
4) and the theorem is proved.

h

We now prove Theorems 3, 4, and 5. The idea is to explic-
itly calculate the ETMRCA

k for the first few k for each allowedL

measure and then use Lemma 6 to show that if L is uniquely
determined by the first few ETMRCA

k ; then it is uniquely de-
termined by tn:

Proof of Theorem 3. ETMRCA
2 ¼ 1 for all L in the set of

possible L’s. Consider L ¼ dz: Using Lemma 5 we see that

ETMRCA
3 ¼ 1

32 2z
þ 32 3z
32 2z

� 1 ¼ 42 3z
32 2z

: (3)

This is a monotonically decreasing function of z 2 ½0; 1�; and
so L is uniquely determined by ETMRCA

3 : Then, appealing to
Lemma 6, we see thatL is uniquely determined by the SFS for
n$ 3:

h

Proof of Theorem 4. A calculation similar to (3) gives
ETMRCA

3 ¼ ð2þ 3aÞ=ð2þ 2aÞ for L ¼ LðXÞ;X � bð22a;aÞ;
where a 2 ½1; 2Þ: This is a monotonically increasing function
of a 2 ½1; 2Þ and the claim follows from the same argument as
in the proof of Theorem 3.

h

Proof of Theorem 5. Suppose that two distinct L-coalescents
within the set of allowed models produce the same expected
SFS for n$ 4: Then, by Lemma 6, they would have the same
values of ETMRCA

2 ; ETMRCA
3 ; and ETMRCA

4 : By Theorems 3 and 4,
we know that the L measures cannot both be point-mass coa-
lescents or b-coalescents. From Bhaskar and Song (2014,

Figure 4 The KL divergence
DKLð~Pðz1 ;a1Þ

m ∥Pðz2 ;a2ÞÞ; where
Pðz2 ;a2ÞðkÞ} t

ðz2 ;a2Þ
n;k is the dis-

tribution of derived alleles
under scenario ðz2ðtÞ;a2Þ; and

~P
ðz1 ;a1Þ
m ðkÞ}~tðz1 ;a1Þ

n;k ðmÞ is the condi-

tional distribution of derived alleles,
given the first m trees simulated
under ðz1ðtÞ;a1Þ and a mutation
hitting one of those trees. For m
large enough, DKL is minimized
by the true parameters; i.e.,
ðz1ðtÞ;a1ðtÞÞ ¼ ðz2ðtÞ;a2ðtÞÞ: DKL

can typically discriminate the true
scenario for m ¼ 100 trees. For
m ¼ 10 trees, DKL is often, but
not always, minimized by the true
scenario.
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corollary 8), we also know that theLmeasures cannot both be
Kingman’s coalescent with different exponential growth
parameters. There are thus three cases. They are all straightfor-
ward, albeit tedious.

Case 1. One Lmeasure is a point-mass coalescent and the
other is a b-coalescent. Letting ETMRCA

2 ¼ 1 (without loss of
generality), we can explicitly compute ETMRCA

4 for the point-
mass coalescent and the b-coalescent, using the same recur-
sive idea as in the Proof of Theorem 3. Let pm;k denote the
probability that when there are m lineages, exactly k of
them are involved in the next coalescence event. Then,
by Lemma 5 ETMRCA

4 ¼ c4;4 þ p4;2ETMRCA
3 þ p4;3ETMRCA

2 : In
particular, for the point-mass coalescent dz; this implies
ETMRCA

4 ¼ 5=3þ 1=ð2z2 3Þ þ ð32 2zÞ=ð182 24zþ 9z2Þ:
Now, recalling the expression of ETMRCA

3 in (3) and letting

ETMRCA
3 ¼ t (4)

implies z ¼ ð3t2 4Þ=ð2t2 3Þ: Plugging this into ETMRCA
4 ; we

see that for the point-mass coalescent,

ETMRCA
4 ¼ 1

3

"
6t2 42

2t2 3
6þ tð3t2 8Þ

#
: (5)

A similar calculation for the b-coalescent shows that

ETMRCA
4 ¼ 1

3

�
6t2 2þ 1

t2 2

�
; (6)

with t :¼ ETMRCA
3 under the b-coalescent. Equating (5) and

(6) and solving for t results in the solution t ¼ 1 or t ¼ 4=3:
But, if t ¼ 1; then we see that z ¼ 1; the star coalescent,
which corresponds to a ¼ 0 for the b-coalescent, which
is not in the set of allowed b-coalescents. If t ¼ 4=3;
we see that z ¼ 0; which corresponds to Kingman’s
coalescent, and a ¼ 2 for the b-coalescent, which again
is not in the set of allowed b-coalescents. Therefore,
a point-mass coalescent and a b-coalescent with a 2 ½1; 2Þ
cannot have the same ETMRCA

2 ;ETMRCA
3 ; and ETMRCA

4
simultaneously.

Case 2. One Lmeasure is a point-mass coalescent and the
other is Kingman’s coalescent with exponential growth.
Without loss of generality, assume that ETMRCA

2 ¼ 1 for
the point-mass L-coalescent. The exponential-growth
Kingman’s coalescent model considered here has

cm;m ¼ 2ð1=bÞe
�

m

2

�

ðabÞ

Ei
�
2

�
m
2

�

ðabÞ

�
; where

EiðxÞ :¼ 2
RN
2xðe2t   =tÞdt is the exponential integral (Bhaskar

et al. 2015, supplemental material equation 5). Then, the con-
straint ETMRCA

2 ¼ c2;2 ¼ 1 implies b ¼ 2e1=dEið21=dÞ; where
d :¼ ab: Furthermore, assuming this constraint and applying
Theorem 1 to Kingman’s coalescent, we obtain

ETMRCA
3 ¼ 3

2
2

c3;3
2

¼ 3
2
2

e2=dEið23=dÞ
2Eið21=dÞ ; (7)

ETMRCA
4 ¼ 9

5
2 c3;3 þ c4;4

5

¼ 9
5
2

e2=dEið23=dÞ
Eið21=dÞ þ e5=dEið26=dÞ

5Eið21=dÞ : (8)

Now, in addition to ETMRCA
2 ; if the two coalescents have the

same values ofETMRCA
3 andETMRCA

4 ; then the right-hand sides
of (4) and (7) must agree, while the right-hand sides of (5)
and (8) must agree. This implies

f1ðdÞ þ e5=dEið2ð6=dÞÞf2ðdÞ
Eið2ð1=dÞÞf2ðdÞ ¼ 0; (9)

where

f1ðdÞ :¼ 2Ei
�
2
1
d

�(
e4=d

�
Ei
�
2
3
d

��2
24e2=dEi

�
2
3
d

�
Ei
�
2
1
d

�

þ
�
Ei
�
2
1
d

��2)
;

f2ðdÞ :¼ 3e4=d
�
Ei
�
2
3
d

��2
2 2e2=dEi

�
2
3
d

�
Ei
�
2
1
d

�

þ 3
�
Ei
�
2
1
d

��2
:

However, by Lemma 8 in the Appendix, there is no d 2 ð0;NÞ
such that (9) holds.

Case 3. One L measure is a b-coalescent and the other is
Kingman’s coalescent with exponential growth. If these
two coalescents produce the same values of ETMRCA

2 ;

ETMRCA
3 ; and ETMRCA

4 ; then we must have t ¼ 3=22
e2=dEið23=dÞ=2Eið21=dÞ in (6), and equating (6) and (8)
implies

g1ðdÞ þ 3e5=dEið2ð6=dÞÞg2ðdÞ
Eið2ð1=dÞÞg2ðdÞ ¼ 0; (10)

where

g1ðdÞ :¼ 2Ei
�
2
1
d

��
24e2=dEi

�
2
3
d

�
þ Ei

�
2
1
d

��
;

g2ðdÞ :¼ e2=dEi
�
2
3
d

�
þ Ei

�
2
1
d

�
:

However, by Lemma 9 in the Appendix, there is no d 2 ð0;NÞ
such that (10) holds.

Since each of the three cases results in a contradiction, we
see that no such L measures exist, proving the identifiability
claim.

h
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Discussion

We have presented an efficient algorithm for computing the
SFS for a very general class of coalescents. While L- and
J-coalescents seem to be primarily used in practice to model
the genealogies of marine species (Árnason 2004; Hedgecock
and Pudovkin 2011), these coalescents also model a wide
range of other phenomena, including continuous strong pos-
itive selection (Neher and Hallatschek 2013), recurrent se-
lective sweeps (Durrett and Schweinsberg 2004, 2005),
strong bottlenecks (Birkner et al. 2009), and many others.
Perhaps one of the reasons these coalescents are less widely
used than Kingman’s coalescent is because efficient inference
tools have not yet been developed to the same extent.

Multiple-merger coalescents have also attracted some in-
terest recently in the context of extremely large sample sizes
(Bhaskar et al. 2014). In such cases the sample size is too
large for the assumption of only pairwise mergers of lineages
imposed by Kingman’s coalescent to be biologically plausible,
and indeed using Kingman’s coalescent to model such pop-
ulations causes biases in inference (Bhaskar et al. 2014). It
should be possible to extend the results presented in this
article to discrete-time coalescents, such as the “exact coales-
cent” (Fu 2006) corresponding to the coalescent arising
from the discrete-time Wright–Fisher process, or to any
of the discrete-time random-mating models considered
by Eldon and Wakeley (2006).

Wealsopresented someencouraging identifiability results.
While it is impossible in the general case to infer the inverse
intensity function z or themeasure of aL-coalescent from the
SFS, for many biologically important cases identifiability
does indeed hold. The method we presented for proving
that the L measure is identifiable for constant z is power-
ful, but straightforward and should make it easy to prove
whether the measure is identifiable for other sets of L- or
J-coalescents. While we considered the identifiability of L
only for fixed, constant z and the identifiability of z for fixed
L or J; it would be interesting to see whether identifiability
results can still be obtained for somemodel spaceswhile allow-
ing both L and z to vary. It would also be interesting to extend
our identifiability results for the L measure to some of the
biologically relevant J-coalescents.

Our identifiability results generally assumed access to the
expectedSFS. In practice, one observes afinitenumber of sites
and soonehasonly anoisy estimateof theSFS.Our simulation
study shows that, given a moderate number of independent
trees, the empirical SFS is accurate enough to distinguish
LðdxÞ=hðtÞ for some simple models. However, the effects of
noisy data are still largely unknown, especially in cases where
convergence to the expected SFS is not guaranteed. The ac-
curacy of inferring z with the empirical SFS has been studied
for Kingman’s coalescent (Terhorst and Song 2015), and it
would be interesting to extend these results to general
L-coalescents and to the inference of the L-measure itself;
the results presented here should make such an analysis
more tractable.
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Appendix
Here we present two lemmas that are used in Theorem 5. Proofs are tedious but straightforward.

Lemma 8. For d 2 ð0;NÞ;

f1ðdÞ þ e5=dEið2ð6=dÞÞf2ðdÞ
Eið2ð1=dÞÞf2ðdÞ 6¼ 0;

where

f1ðdÞ :¼ 2Ei
�
2
1
d

�(
e4=d

�
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�
2
3
d

��2
2 4e2=dEi

�
2
3
d

�
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2
1
d

�
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Ei
�
2
1
d

��2)
;

f2ðdÞ :¼ 3e4=d
�
Ei
�
2
3
d

��2
22e2=dEi

�
2
3
d

�
Ei
�
2
1
d
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þ 3
�
Ei
�
2
1
d

��2
:

Lemma 9. For d 2 ð0;NÞ;

g1ðdÞ þ 3e5=dEið2ð6=dÞÞg2ðdÞ
Eið2ð1=dÞÞg2ðdÞ 6¼ 0;

where

g1ðdÞ :¼ 2Ei
�
2
1
d

��
24e2=dEi

�
2
3
d

�
þ Ei

�
2
1
d

��
;

g2ðdÞ :¼ e2=dEi
�
2
3
d

�
þ Ei

�
2
1
d

�
:

In what follows, let E1ðxÞ :¼
RN
x ðe2t=tÞdt ¼ 2Eið2xÞ: It is clear that E1ðxÞ.0 for all x. 0: Additionally,

en=dE1

�
nþ 1
d

�
¼
Z N

1=d

e2t

t þ n=d
dt; (A1)

which follows from the definition of E1 and a change of variables.
Proof of Lemma 8. First, by noting that f2ðdÞ ¼ 3½e2=dE1ð3=dÞ2E1ð1=dÞ�2 þ 4e2=dE1ð3=dÞE1ð1=dÞ; it is easy to see that the

denominator is strictly negative for d 2 ð0;NÞ: We now show that the numerator is strictly positive for d 2 ð0;NÞ: First, by
rearranging terms we see that

f1ðdÞ þ e5=dEi
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d
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(A2)

Then, note

E1

�
1
d

�
2 e2=dE1

�
3
d
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d

Z N
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e2t
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4
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e2t
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�
1
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�
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�
6
d

��
:

Applying this inequality to the negative term on the right-hand side of (12), we see

1560 J. P. Spence, J. A. Kamm, and Y. S. Song

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/202/4/1549/5930238 by guest on 08 April 2021



f1ðdÞ þ e5=dEi
�
2
6
d

�
f2ðdÞ

. 4
�
E1

�
1
d

�
2 e5=dE1

�
6
d

��

3

�
e2=dE1

�
3
d

�
E1

�
1
d

�
2

�
4
5d

E1

�
1
d

�
þ 6
5d

e5=dE1

�
6
d

���Z N

1=d

e2t

tðt þ 2=dÞ dt
!)

. 4
�
E1

�
1
d

�
2 e5=dE1

�
6
d

��
E1

�
1
d

��
e2=dE1

�
3
d

�
2

4
15

E1

�
1
d

�
2

2
5
e5=dE1

�
6
d

��

¼ 4
�
E1

�
1
d

�
2 e5=dE1

�
6
d

��
E1

�
1
d

�"Z N

1=d

�ð1=3Þt2 þ ð7=3dÞt2 8
�
3d2
�
e2t

tðt þ 2=dÞðt þ 5=dÞ

#
;

which is .0 for any d 2 ð0;NÞ since E1ð1=dÞ. e5=dE1ð6=dÞ and ð1=3Þt2 þ ð7=3dÞt2 8=3d2 . 0 for t. 1=d:

h

Proof of Lemma 9. The denominator of (10) is equal to E1ð1=dÞ½e2=dE1ð3=dÞ þ E1ð1=dÞ�; which is strictly positive for
d 2 ð0;NÞ; by definition of E1ðxÞ: Furthermore, the numerator is strictly negative for d 2 ð0;NÞ by noting the following:
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Therefore, (10) holds.
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