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The human cerebral cortex forms the outer layer of gray matter 
of the brain and underpins cognitive function. It is charac-
terized by complex folding patterns varying between species 

and individuals1,2. Family- and twin-based studies indicate sub-
stantial heritability of brain shape3,4, and a recent genome-wide 
association study (GWAS) found that brain shape is highly poly-
genic with genetic correlations to a broad range of neuropsychiat-
ric disorders and behavioral–cognitive phenotypes5. These studies 
focused on predefined, univariate measures of brain shape, such as 
total or regional surface area, extracted from structural magnetic 
resonance imaging (MRI) scans6, which cannot capture morpho-
logical complexities of the cortical surface. We recently developed 
a data-driven approach to phenotyping complex, multidimensional 
traits7; this multivariate approach, when applied to facial surface 
images, revealed numerous loci with no previously known role in 
human face shape variation7,8. Here, we implemented this approach 
to discover associations between common genetic variants and 
brain shape, using MRI data from middle-aged participants in the 
UK Biobank (UKB) who were free of disease diagnosis.

In addition to sharing complex morphologies, the development 
of the brain and face is highly integrated due to shared developmen-
tal lineage, spatial proximity and signaling cross-talk between both 
structures9. Early in embryonic development, the rostral end of the 
ectodermally derived neural tube gives rise to the forebrain, which 

in turn gives rise to the cerebrum that encompasses the cerebral 
cortex10. Just before forebrain formation, a subset of neuroepithe-
lial cells within the neural folds give rise to facial progenitor cells 
called cranial neural crest cells (CNCCs)11. Following specifica-
tion, CNCCs undergo an epithelial-to-mesenchymal transition and 
migrate ventrally12, giving rise to most of the craniofacial skeleton 
and connective tissue13. Early brain growth rates can modulate both 
positioning and outgrowth of the facial prominences14,15, as well 
as induce flexion and bone deposition of CNCC-derived basicra-
nial bones16,17 and neurocranial sutures18,19, respectively. Finally, 
paracrine factors secreted by either the developing forebrain20–23 or 
CNCCs24–26 modulate the facial or brain development, respectively.

These physical and molecular interactions have been detailed 
by studies in developing chick and mouse embryos, but are also 
supported by widespread co-occurrence of neurodevelopmental 
and craniofacial malformations in rare human syndromes27. This 
phenomenon was noticed by DeMyer et al.28 in 1964, who coined 
the phrase ‘the face predicts the brain’ to describe correlations 
between the severity of brain and face malformations in patients 
with holoprosencephaly. While in some cases this co-occurrence 
may be caused by pleiotropic gene functions, a number of human 
syndromes have been mapped to genes functioning in brain–face 
cross-talk through paracrine signaling29–31. Nonetheless, close 
developmental links between face and brain are underappreciated; 
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whether and how they extend to common human genetic variation 
influencing brain and face shape is unknown.

Results
Multivariate genome-wide association study of brain shape. 
We adapted our previously published data-driven phenotyping 
approach7 to brain shape, as measured by MRI scans of 19,644 indi-
viduals in the UKB. Participants included were of primarily European 
ancestry, such that results do not pertain to cross-population differ-
ences in brain shape. We focused on the mid-cortical surface (mid-
way between the white–gray matter interface and the pial surface 
with the cerebrospinal fluid, as extracted using FreeSurfer6), which 
we refer to as brain shape. Using mid-cortical surfaces represented 
by a mesh of three-dimensional (3D) vertices, the method seg-
ments brain shape in a global-to-local manner, yielding brain seg-
ments at different hierarchical levels of scale. Within each segment, 
principal-component analysis (PCA) is used to describe effects in 
multivariate shape space explaining between-individual variation, 
and canonical correlation analysis (CCA) is used to define, for each 
variant, the linear combination of principal components (PCs) 
maximally associated with SNP dosage. Unsurprisingly, a GWAS of 
left and right hemispheres from the same individuals showed highly 
concordant results (Supplementary Fig. 1); therefore, we performed 
subsequent analyses using left–right hemisphere averaged data.

Applying this pipeline to UKB MRI data defined 285 hierarchical 
segments (Fig. 1 and Supplementary Table 1), decomposing brain 
shape into different levels of detail, from larger brain segments with 
integrated variation, to smaller brain segments with local effects. 
Each hierarchical level is a bipartition of its parent; the first level 
consisted of the entire brain, while the second and third levels seg-
mented the whole brain into halves and quadrants, respectively, and 
the final, ninth level resulted in numerous smaller segments (Fig. 1b). 
Many smaller segments from the seventh hierarchical level onwards 
were discarded due to small surface areas, resulting in fewer total 
segments than the 511 (29 − 1) expected. Nevertheless, the ninth 
hierarchical level yielded a substantial number (74) of retained 
segments; a tenth level would contribute few additional segments 
(Supplementary Fig. 2). The segmentation broadly agreed with 
the commonly used Desikan-Killiany32, Destrieux33 and Glasser34 
brain atlases (Supplementary Fig. 3). Before GWAS, we adjusted for 
covariates including total brain volume, height, body mass index 
(BMI), sex and population structure, as well as performing stan-
dard SNP filtering and quality control (Methods). Applying linkage 
disequilibrium score regression (LDSC)-based heritability estima-
tion to each segment’s GWAS (see Methods and Supplementary 
Note for details on extension to multivariate traits) yielded inter-
cept values close to 1 (range across segments 0.987–1.007, mean 
1.001; Supplementary Table 1), indicating minimal confounding by 
population structure or cryptic relatedness. In total, we conducted 
285 multivariate GWASs using CCA, each corresponding to one 
segment. Around 38,630 SNPs showed genome-wide significant 
(P < 5 × 10−8) associations with brain shape in at least one segment; 
of these, 23,413 reached study-wide significance (P < 2.07 × 10−10 
correcting for the number of effective GWASs, estimated by per-
mutation; Methods) in at least one segment. Collapsing these SNPs 
into independent signals based on linkage disequilibrium (LD) 
and distance yielded 472 and 242 loci reaching genome-wide and 
study-wide significance, respectively (Supplementary Table 2). Most 
of the 472 loci showed effects on multiple segments (305/472, 65%), 
and many showed effects on multiple quadrants (158/472, 33%; 
Fig. 1 and Supplementary Table 2), consistent with global-to-local 
effects at multiple levels of brain shape. Masking of associations 
from progressively higher hierarchical levels revealed that segments 
from higher levels contributed a substantial fraction of associations; 
for example, segments beyond the first three levels contributed 169 
and 55 loci reaching genome-wide and study-wide significance, 

respectively (Extended Data Fig. 1). Associations between the 472 
loci and brain shape were depleted from the frontal lobe segments 
(except for the most anterior orbitofrontal cortex) and enriched 
in the occipital and temporal lobe segments (Supplementary Fig. 
4), mostly in agreement with point-wise heritability estimates 
(Extended Data Fig. 2).

We assessed the overlap between the 472 loci and previous 
GWAS results of brain surface areas or subcortical volumes5,35–39. 
The 472 loci recapitulated 27–78% of the associations reported in 
previous studies; the highest overlap of 78% was reported in a recent 
study of univariate brain surface area5, the phenotype most compa-
rable to the shape measures studied here (Table 1). Of the 472 loci, 
121 overlapped with those reported in previous studies on brain 
surface area or subcortical volume, while 351 represent previously 
undescribed associations with brain morphology. To assess the 
reproducibility of the 472 loci on the same shape measures, we ana-
lyzed MRI data from the Adolescent Brain Cognitive Development 
(ABCD) study40. Of the 472 loci, 466 were tested for replication 
(Methods). At a false discovery rate (FDR) of 5%, we replicated at 
least one associated segment for 305 of 466 (65.4%) loci, and 2,645 
of 3,586 (73.8%) locus–segment combinations (Supplementary 
Table 3). We observed consistent rates when subdividing based on 
the hierarchical level of the segments being replicated, albeit with 
a slight decrease in replication rate at higher levels (Extended Data 
Fig. 3). These replication rates are notable given the substantial age 
difference of the ABCD cohort (9–10 years versus 40–70 years in 
the UKB). The high reproducibility of GWAS results between the 
two cohorts suggests that, despite the known continued growth 
and morphological changes of the brain throughout adolescence 
and into adulthood41, many of the observed associations with brain 
shape originate during development and are maintained through-
out life.

We next used functional mapping and annotation of GWAS 
(FUMA)42 and the genomic regions enrichment of annotations tool 
(GREAT)43 to identify pathways enriched among genes near the 472 
loci, as well as curated gene panels used to guide disease diagnoses44 
to identify disease associations (Methods). As expected, we found 
strong enrichment for brain-specific processes (neurogenesis, axo-
nogenesis, neuron differentiation, nervous system development 
and neuron projection guidance), morphogenesis-related processes 
(anatomical structure morphogenesis and animal organ morpho-
genesis) and neurodevelopmental disorders (intellectual disability, 
malformations of cortical development and ciliopathies). We also 
observed a weak enrichment of terms related to formation and clo-
sure of the neural tube, suggesting that early developmental events 
impact adult brain shape. Surprisingly, we also observed strong 
enrichment of terms related specifically to CNCC development and 
migration, as well as weaker enrichment of broader terms encom-
passing skeletal system development, chondrogenesis and osteo-
genesis (Supplementary Data 1). Furthermore, we found strong and 
weak enrichments for craniosynostosis (premature closer of the 
cranial bone sutures) and clefting gene panels, respectively. These 
enrichments suggest a link between variation in brain shape and 
craniofacial skeletal development.

Loci affecting both brain and face shape. To more directly test 
for sharing of genetic effects between brain and face shape, we 
intersected the 472 loci described in this study with 203 loci pre-
viously associated with face shape in individuals of European 
ancestry through a similar, open-ended phenotyping approach8. 
Thirty-seven of the loci for brain shape were linked (r2 > 0.2) to at 
least one of the face shape loci, significantly above random expecta-
tion (P = 2.03 × 10−22, odds ratio = 10.6) and greater than the over-
lap with other traits that have similar numbers of genome-wide 
significant associations in the NHGRI-EBI GWAS Catalog45 
(Extended Data Fig. 4). Identifying signals showing a genome-wide  
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significant association with one of brain or face shape and a sugges-
tive (P < 5 × 10−7) association with the other resulted in 76 brain–
face shared loci (Fig. 2a).

Genes near the 76 brain–face shared loci were strongly enriched 
for disease associations, including ‘skeletal disorders’ and ‘hearing 
and ear disorders’, consistent with the contribution of CNCCs to 
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Fig. 1 | Multivariate genome-wide association study of brain shape. a, Upstream processing of UKB MRI images. b, In the polar dendrogram (left), 
each concentric ring of filled circles corresponds to a hierarchical level (i–ix) shown on the right, and the filled circle colors correspond to the respective 
segments in the same hierarchical level. c, Ideogram showing genomic locations and regional effects of 472 genome-wide significant loci for brain shape. 
Circles and diamonds represent associations passing the study-wide or genome-wide significance thresholds. Colors represent broad regions of the brain 
with the indicated effects.
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craniofacial skeleton and ear structures. We next manually scanned 
the 76 brain–face shared loci for genes with known roles in craniofa-
cial or brain development from human syndromes and/or knockout 
mouse models (Supplementary Table 4). We observed that many of 
the shared brain–face loci included genes encoding transcription 
factors (TFs) involved in neural crest formation and/or craniofa-
cial skeletal development. Some of those TFs (for example, DLX5/6, 
SOX9, ZEB2, ZIC2, ZIC3 and TCF4) have known functions in 
both neural crest and brain development, and this pleiotropy may 
account for the shared brain–face genetic signals. However, other 
shared brain–face signals are associated with TFs thought to func-
tion primarily during neural crest rather than brain development, 
and whose mutation causes specific craniofacial defects; those 
TFs include ALX1 and ALX4 (associated with frontonasal dyspla-
sias46,47), TWIST1 (associated with Saethre–Chotzen syndrome48,49), 
PAX3 (associated with Waardenburg syndrome50) and TFAP2B 
(associated with CHAR syndrome51). Consistent with the primary 
role of these TFs in facial development, transcriptome analysis 
showed high expression in in vitro-derived human CNCCs and 
their chondrocyte derivatives52, but low or no expression in either 
glia or neurons of human forebrain organoids spanning a range of 
developmental stages53 (Fig. 2b). These observations suggest that 
genetic variants affecting key craniofacial TFs have a greater than 
previously appreciated impact on brain shape.

Interactions between face and brain can be architectural, with 
the forebrain acting as a structural support for facial development, 
and facial skeletal structures flexing to accommodate early brain 
growth54. However, these interactions can also involve paracrine 
signaling, with fibroblast growth factor (FGF), Hedgehog and bone 
morphogenetic protein (BMP) pathways known to mediate the 
signaling from the developing brain to the face20–22. Interestingly, 
genes encoding members of all three pathways, FGF (FGF2, FGF13, 
FGF18 and SPRY2), Hedgehog (PTCH1) and BMP (BMP2 and 
BMP4) are among the shared brain–face loci. For example, muta-
tions in PTCH1, encoding the receptor for the sonic hedgehog 
ligand, cause holoprosencephaly55, a congenital, structural forebrain 
anomaly with associated craniofacial malformations. Conversely, 
CNCCs secrete anti-BMP signaling molecules that modulate fore-
brain development24,25; expression of these BMP antagonists is 
dependent on the SIX family of TFs, whose perturbation in CNCCs 
leads to both craniofacial malformations and secondary pre-otic 
brain defects56. SIX1 and SIX4 are also among the 76 brain–face 
shared loci (Fig. 2a). Furthermore, genes linked to other signal-
ing pathways, including Wnt (DAAM1, DAAM2, TNKS, AHI1, 
FBXW11 and MCC) and transforming growth factor beta (LEMD3 
and PPP2R3A), are among the shared brain–face loci. Not unex-
pectedly, and in contrast to craniofacial TFs, signaling pathway 
ligands, receptors and regulators are variably expressed between 
in vitro-derived CNCCs and brain organoids (Fig. 2b).

Phenotypically, these highlighted loci largely affect brain shape 
in the frontal and temporal lobes, and face shape in the forehead 
and nose, as exemplified by PAX3 and ALX1 (Fig. 2c), consistent 
with the physical proximity of the frontonasal prominence and the 
forebrain during development. Phenotypic effects distinct from this 
pattern include effects of variants near BMP4 and DLX6 on jaw and 
chin morphology, consistent with their known roles in mandibular 
development57,58, and effects of variants near PTCH1 on occipital 
lobe morphology (Fig. 2c). Together, these results suggest that both 
cell-intrinsic mechanisms and paracrine signaling pathways con-
tribute to the substantial number of loci with shared associations 
with brain and face shape.

Genome-wide sharing of signals with neuropsychiatric disor-
ders and behavioral–cognitive traits. We next asked whether the 
brain–face overlap among genome-wide significant loci held across 
the genome, also considering GWASs of neuropsychiatric disor-
ders and behavioral–cognitive traits. LDSC can estimate genetic 
correlations between univariate traits using signed summary sta-
tistics59. However, this approach is not applicable to unsigned sta-
tistics yielded by CCA. We therefore applied an alternative method 
of assessing genome-wide sharing of signals between two GWASs, 
summarizing SNP P values within approximately independent LD 
blocks and computing Spearman correlations between the two sum-
marized profiles (Methods). When applied to pairs of univariate 
GWAS results, the Spearman correlation method was largely con-
cordant with, albeit generally smaller in magnitude than, unsigned 
estimates of LDSC-estimated genetic correlations (Extended Data 
Fig. 5), indicating that it is a conservative, robust measure for quan-
tifying genome-wide sharing of GWAS signals.

We first assessed sharing of association signals between 63 face 
segments and 285 brain segments (Supplementary Table 5). All 
four main facial quadrants, representing shape variation within the 
forehead, nose, lower face (mandible and cheeks) and philtrum, 
respectively, showed the most sharing with frontal lobe segments, 
particularly the most anterior portions such as the rostral prefrontal 
cortex, and the least sharing with parietal lobe segments (Fig. 3a). 
Furthermore, among the facial quadrants, the forehead and nose 
showed more sharing with frontal lobe segments than the philtrum 
and lower face. These genome-wide correlations are consistent with 
the phenotypic effects of top brain–face shared loci (Fig. 2c and 
Supplementary Fig. 5).

We next assessed sharing of signals with other brain-related 
traits. We used publicly available genome-wide summary statis-
tics for a range of neuropsychiatric disorders, behavioral–cogni-
tive traits and subcortical brain volumes from studies other than 
UKB, since our Spearman correlation measure does not control 
for sample overlap (Supplementary Table 6). As approximate nega-
tive controls, we used four immune-related diseases shown to have 
minimal genetic correlation with schizophrenia and bipolar dis-
order60. Subcortical volumes showed the most sharing with brain 
shape in the corresponding regions, but the magnitude of these 
correlations was relatively low (on par with sharing between brain 
and face shape), indicating that our multivariate GWAS approach 
detects effects beyond those resulting from changes in relative sub-
cortical volume (Fig. 3b). We found that disorders with primar-
ily developmental etiology showed substantial sharing with brain 
shape in regions previously linked to these disorders. For instance, 
schizophrenia and attention deficit hyperactivity disorder (ADHD) 
showed sharing with shape variation in the primary auditory61,62 
and prefrontal cortex63 regions, respectively. In contrast, we did not 
observe this association for Alzheimer’s disease, caused by plaque 
buildup and neurodegeneration much later in life. Behavioral– 
cognitive traits such as intelligence, neuroticism and worry showed 
broader patterns of sharing with brain shape, reflecting the involve-
ment of distributed cortical regions in these traits64–66 (Fig. 3b). 

Table 1 | Overlap between previous GWAS results of brain 
surface areas or subcortical volumes with GWAS results of 
brain shape in this study

Study Number 
of loci 
tested

Number 
of lead 
SNPs with 
P < 5 × 10−8

Number 
of proxy 
SNPs with 
P < 5 × 10−8

Overlap 
(%)

Subcortical 
combined31–34

65 15 18 27.6

Grasby et al.5 301 195 236 78.4

Zhao et al.35 494 212 273 55

‘Subcortical combined’ refers to a combined set of loci from four studies of subcortical volume 
measures35–38.
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Sharing between brain shape and the immune diseases was gener-
ally lower than with neuropsychiatric disorders, behavioral–cogni-
tive traits or subcortical volumes, but reached significance for type 1 
diabetes (T1D) and rheumatoid arthritis (RA; Fig. 3c). This overlap 
may be because these immune traits have genetic correlation with 
brain-related traits other than those tested previously (schizophre-
nia and bipolar disorder), as suggested by a significant genetic cor-
relation between RA and intelligence (Extended Data Fig. 6).

Finally, we compared the degree to which face shape shares sig-
nals with neuropsychiatric disorders, behavioral–cognitive traits 
and subcortical volumes. Brain shape shares significant (5% FDR) 
signal with most neuropsychiatric traits, as well as all behavioral–
cognitive and subcortical volume traits analyzed. In contrast, face 

shape does not show significant sharing with any of the neuropsy-
chiatric disorders or behavioral–cognitive traits, and significant but 
weaker sharing with the subcortical volume measures (Fig. 3c). To 
confirm these patterns using univariate approaches, we performed 
a GWAS on the most heritable individual PCs of full brain or face 
shape and computed genetic correlations using LDSC. Although 
genetic correlation estimates were noisy due to low heritability of 
univariate shape GWAS, they agreed with our Spearman correlation 
measure, finding nonzero genetic correlations between both brain 
and face shape and subcortical volumes, and between brain shape 
and both autism spectrum disorder and bipolar disorder (Extended 
Data Fig. 7). Thus, the substantial sharing of signals between 
brain and face shape (Fig. 3a) appears to be mostly independent of  
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neuropsychiatric disorder risk and behavioral–cognitive traits, 
perhaps because mutual influences of face and brain shape on 
each other involve phenotypic effects on brain shape distinct from 
those influencing neuropsychiatric disorder risk and behavioral– 
cognitive traits.

Cell types influencing brain and face shape. Our results thus far 
suggest that a substantial fraction of brain shape variation is under-
pinned by face shape, but that these observed effects are largely 

independent of effects shared between brain shape and other cog-
nitive traits. To test this idea further, we sought to identify the cell 
types most enriched for heritability of brain shape, face shape and 
other cognitive traits. Partitioning heritability into cell-type-specific 
functional annotations via stratified LD score regression (S-LDSC) 
can prioritize trait-relevant cell types, but was developed for uni-
variate traits67; we thus sought to extend the theoretical frame-
work of S-LDSC to multivariate traits such as our brain and face 
shape GWAS. We demonstrated that when applying unstratified 
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LDSC59 to χ2 statistics obtained from multivariate traits with inde-
pendent dimensions and further corrected for dimensionality, the 
LDSC-estimated heritability equals the average heritability of the 
component univariate traits (Methods and Supplementary Note), 
a finding that we validated through heritability estimation of each 
PC making up the full face (Extended Data Fig. 8). By extension, 
heritability enrichments obtained by applying S-LDSC on multi-
variate, corrected χ2 statistics partitioned by annotation represent 
the average heritability enrichment for each component univariate 
trait (Methods and Supplementary Note).

We collected genome-wide data on open chromatin (inferred 
from the assay for transposase-accessible chromatin using 
sequencing (ATAC–seq)) and active regulatory regions (inferred 
from chromatin immunoprecipitation followed by sequenc-
ing (ChIP–seq) of histone marks) from a variety of cell types 
and tissues, including in vitro-derived CNCCs and their chon-
drocyte derivatives52,68, embryonic craniofacial tissue at differ-
ent stages of development69, neuronal and glial cells from 3D 
forebrain organoids at various differentiation stages53 and both 
fetal and adult brain tissue70. We quantified brain and face shape 
heritability enrichments for these cell-type-specific annotations 
(Supplementary Data 2). Face shape showed significant (5% FDR) 
heritability enrichment specific to regulatory regions in cranio-
facial cell types (mean z-score 4.58; Fig. 4a). Brain shape showed 
significant and comparable heritability enrichments for regulatory 
regions in craniofacial cell types and tissues, brain organoids and 
fetal brain tissue (mean z-scores 4.23, 3.23 and 3.33, respectively; 
Fig. 4b). Within brain organoids, the strongest enrichments were 
for early-stage glial cells and whole organoids (mean z-score 4.11; 
Extended Data Fig. 9), consistent with an important role for radial 
glial cells in corticogenesis and in agreement with enrichments 
of brain surface area heritability5. The strong enrichments for 
craniofacial cell types, which were more significant than organ-
oid enrichments in the orbitofrontal and medial temporal lobes 
(Supplementary Fig. 6), suggest that heritability shared between 
brain and face shape is mediated primarily by CNCCs and their 
derivatives early in embryonic development. Consistent with 
this idea, quantifying brain shape heritability enrichments after 
removing the 76 brain–face shared loci resulted in decreased 
enrichment for CNCCs (z-score difference −0.68) and slightly 
increased enrichment for early-stage glial cells (z-score difference 
0.23; Extended Data Fig. 10).

Finally, we quantified heritability enrichments for neuropsychi-
atric disorders, behavioral–cognitive traits and subcortical volumes. 
Neuropsychiatric disorders and behavioral–cognitive traits showed 
enrichment patterns distinct from those of brain shape, with signifi-
cant enrichment for both fetal and adult brain tissue (mean z-scores 
2.17 and 2.64, respectively), and broad enrichment across stages 
and cell types of brain organoids (mean z-score 2.46). In contrast to 
brain shape, these traits showed no enrichment for craniofacial cell 
types or tissues (mean z-score −0.92; Fig. 4c). Subcortical volumes 
showed mixed enrichment patterns, with some regions (amygdala 
and caudate) similar to those of multivariate brain shape and others 
(putamen) closer to those of neuropsychiatric disorders and behav-
ioral–cognitive traits. These results suggest that while much of the 
shared genetic variation between brain and face shape is mediated 
by regulatory regions in CNCCs and their craniofacial derivatives, 

variation in these regions does not appear to impact neuropsychiat-
ric disorder risk or other behavioral–cognitive traits.

Discussion
Here, we applied multivariate phenotyping to discover numerous 
loci underlying common variation in brain shape. While these loci 
broadly implicate known pathways in brain development, the pre-
cise mechanisms by which they modulate brain shape are unknown, 
suggesting further avenues of investigation. As part of our study, we 
extended techniques for estimating genome-wide and partitioned 
heritability, originally developed for univariate traits, to multivariate 
traits. We anticipate that these and similar extensions will become 
increasingly useful with the greater availability of high-dimensional 
imaging or morphological data in large sample sizes.

We found a striking convergence of common genetic variation 
affecting brain and face shape, at least in part mediated by regula-
tory regions active in CNCCs and their derivatives. These observa-
tions suggest a larger than previously appreciated role of the face 
in shaping development of the brain and its morphological varia-
tion between individuals. However, these shared genetic effects do 
not appear to substantially impact neuropsychiatric disorder risk 
or cognitive functions. Our results are therefore consistent with a 
model whereby CNCCs and their derived cranial structures sub-
stantially influence brain shape through both physical interactions 
and paracrine signaling early in embryogenesis, but later shap-
ing of cortical morphology, through processes such as the folding 
of the cortical surface71, has a greater impact on cognitive traits. 
Nevertheless, we cannot exclude the possibility that future GWASs 
of cognitive traits show more substantial overlap with brain–face 
shared genetic effects, perhaps due to alternative trait definitions or 
to greater statistical power.

A number of developmental mechanisms could mediate shared 
brain–face genetics. One potential contribution comes from the 
common neuroepithelial origins of the two structures, with genes 
influencing growth, patterning and cell fate decisions within the 
neural plate ultimately affecting cell allocation within distinct 
parts of the brain and face; examples of such neural plate genes 
within brain–face shared loci include ZIC2 and ZIC3 (refs. 72–74). 
Another potential mechanism entails common genetic variation 
modulating expression of genes with independent roles in both 
brain and face development. SOX9, encoding a TF with key func-
tions in neural crest development and chondrogenesis, but which 
is also required for gliogenesis75, is an attractive candidate for this 
mechanism. Nonetheless, the primary impact of brain–face shared 
genetic effects on facial regions from the frontonasal prominence 
and anterior forebrain regions of the brain suggests additional, 
proximity-based mechanisms, which can be either structural, or 
mediated by paracrine signaling. While brain and face develop-
ment must be tightly coordinated, the former is thought to have 
greater structural effects on craniofacial development, as the fore-
brain can serve as structural support for facial development54 as 
well as induce flexion of the basicranium and bone deposition at 
coronal sutures through growth-dependent tensile forces17,18,54. 
However, we find multiple brain–face shared loci near TFs with 
known, cell-intrinsic roles in, and expression specific to, CNCCs 
and their derivatives. Furthermore, mutations in genes encoding 
these TFs result in malformations of the frontal facial skeleton, 

Fig. 4 | Partitioned heritability enrichments based on cell-type-specific regulatory annotations. Heritability enrichment z-scores, as estimated by 
S-LDSC, of multivariate shape for the first seven face segments (a), multivariate shape for the first seven brain segments (b), excluding segment 4 which 
had low heritability, neuropsychiatric disorders (c), behavioral–cognitive traits (d) and subcortical volume measures (e). Heritability enrichments were 
estimated for annotations based on open chromatin (based on ATAC–seq), regulatory regions (based on ChIP–seq) of multiple histone modifications), or 
a combination of the two. Annotations for the indicated samples, representing in vitro-derived cell types, primary tissues, or a combination of both (see 
Methods for source papers), were added to the S-LDSC baseline model, and the resulting z-score was scaled by column to visualize relative enrichments 
between traits. *5% FDR based on unscaled z-scores. hESC, human embryonic stem cell; iPSC, induced pluripotent stem cell.
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such as coronal synostosis (TWIST1)48,49 or frontonasal dysplasias 
(ALX1 and ALX4)46,47. One explanation for these results is that 
these TFs control regulatory programs ultimately modulating the 

ability of the craniofacial skeleton to respond to and accommo-
date brain growth, causing subtle changes in brain shape. It is also 
possible, however, that these TFs exert some phenotypic effects on 
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brain shape by regulating expression of signaling ligands secreted 
from the face. For example, CNCCs secrete BMP antagonists that 
modulate forebrain development by blocking BMP and FGF pro-
duction in the anterior neural ridge24,25. BMP antagonist produc-
tion in CNCCs is regulated by the SIX family TFs56, with SIX1/SIX4 
lying near a shared brain–face GWAS signal (Fig. 2a). In the reverse 
direction, studies in chick embryos have shown that Fgf, Shh and 
BMP ligands are secreted by the forebrain and regulate the forma-
tion of the frontonasal ectodermal zone, a signaling center that in 
turn patterns the frontonasal prominence of the developing face20–

22,76. Notably, our study implicates all three of these signaling path-
ways, nominating specific ligands and receptors whose modulation 
may be associated with the brain–face cross-talk. Furthermore, 
our study nominates other pathways, such as Wnt and transform-
ing growth factor beta, for roles in paracrine brain–face signal-
ing. Altogether, we uncovered common genetic variants yielding 
numerous candidate molecular players whose diverse mechanistic 
roles in mediating brain–face interactions during development can 
be examined in future studies.

Relationships of facial shape with cognitive and personality 
traits have fascinated humans since ancient times, from the ancient 
Greeks, who introduced ‘physiognomy’ to describe a practice of 
assessing one’s personality from facial appearance77, through the 
Vedic traditions of Samudrika Shastra78 and to the Chinese art of 
face reading79. The concept of physiognomy was revived in the 18th 
century by Johan Kaspar Lavater, and later led to a related pseu-
doscientific theory, phrenology, popularized by Franz Josef Gall. 
Both theories have a troubled history, as they have been used to 
justify racial discrimination and eugenic theories80,81. While the 
original formation of physiognomy has been debunked, modern 
studies have found correlations between facial width-to-height 
ratios and aggressive tendencies82, with regrettable renewed efforts 
in using machine learning approaches to detect such correlations 
raising serious ethical concerns83,84. Our results argue that while the 
ancient human intuition of a close relationship between the face and 
brain has genetic support at the morphological level, there does not 
appear to be genetic evidence for the supposed predictive value of 
face shape in behavioral–cognitive traits, which formed the core of 
physiognomy and related theories.
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Methods
UK Biobank data preprocessing. The UKB project encompasses ~500,000 British 
volunteers with informed consent containing genetics, nonimaging variables and 
brain imaging data acquired using a fixed protocol85. Hereby, brain T1-weighted 
MRI scans of the UKB, as well as genotyping and covariate information (for 
example, sex, age, height and weight), were used as the discovery dataset. We 
utilized release v1.5 (August 2018), which holds a cohort of 21,780 participants. 
This cohort was composed of an adult population (40 to 70 years old, mean 
of 60 years old), with slightly more females than males (51.6% versus 48.4%, 
respectively), a predominantly self-reported white British ancestry (97.1%), and an 
average BMI of 26.6.

For 21,780 participants, we processed raw MRI data for a surface-based 
analysis of the cortex using the following four-step procedure. Further details for 
each step are provided in the Supplementary Note.

First, the cortical surfaces were segmented and reconstructed from the MRI 
volumetric data using the ‘recon-all’ command (FreeSurfer86 v.6.0.0; https://surfer.
nmr.mgh.harvard.edu/). In this step, 20,409 images were processed successfully.

Second, to obtain a minimally preprocessed pipeline similar to the one of the 
Human Connectome Project (HCP; http://www.humanconnectomeproject.org/), 
the Connectivity Informatics Technology Initiative file format (CIFTIFY; https://
github.com/edickie/ciftify/ and https://www.nitrc.org/projects/cifti/) was used 
to convert FreeSurfer’s recon-all command output to a HCP-style file format and 
structure87.

Third, from the CIFTIFY output, we selected the mid-cortical surface of the left 
and right hemispheres, which is the surface that runs at the mid-distance between 
the white surface (at the interface between gray and white matter) and the pial 
surface (the external cortical surface)88, using the Conte69 atlas (http://brainvis.
wustl.edu/wiki/index.php//Caret:Atlases/Conte69_Atlas). The mid-cortical surface 
does not overrepresent or underrepresent gyri or sulci89, but is otherwise an 
arbitrary choice.

Fourth, as quality control for each hemisphere, we checked the resulting 
mid-cortical surfaces for mesh artifacts in a semiautomatic manner. All images 
passed this quality-control procedure, yielding 20,407 processed images.

For the list of 20,407 individuals with preprocessed images, we selected 
genomic data from the UKB, which consisted of the version 3 (March 2018) 
imputed SNP genotypes, imputed to the Haplotype Reference Consortium and 
merged UK10K and 1000 Genomes (phase 3) panels. See the Supplementary 
Note for more details on filtering of SNPs and individuals based on ancestry and 
relatedness. This resulted in 9,705,931 filtered SNPs for GWAS analysis on 19,670 
unrelated individuals of European descent.

For the list of 19,670 participants with preprocessed brain and genetic data, we 
collected the following covariates to control for during statistical testing: genetic 
sex, age, age squared, height, weight, diastolic blood pressure, systolic blood 
pressure and the first 20 genetic PCs. Furthermore, the following imaging-specific 
parameters were included, according to work by Elliot et al.90: volumetric scaling 
from T1 head image to standard space, xyz position of brain mask in scanner 
coordinates, z position of table/coil in scanner coordinates, date of attending 
assessment center and name of assessment center (coded as a dummy variable 
for each of the 21 centers). See the Supplementary Note for more details on 
covariate-based filtering of individuals. Next, to symmetrize brain shape, the 
right hemisphere was reflected to the side of the left hemisphere, by changing 
the sign of the x-coordinate for all of the 29,759 3D vertices on the surface of the 
right hemisphere. We performed a generalized Procrustes superimposition91, 
thus eliminating differences in position, orientation and scale (measured by 
centroid size) of all left and right hemispheres pooled together. We computed the 
symmetric brain component as the vertex-wise averaged brain surface of paired 
and superimposed left and right hemispheres. This resulted in a final discovery 
dataset of 19,644 participants containing preprocessed MRI imaging data on the 
mid-cortical symmetrized surface, 9,705,931 imputed SNPs and 54 covariates.

Adolescent Brain Cognitive Development Study data preprocessing. The 
ABCD Study (https://abcdstudy.org/about/) is a longitudinal study following brain 
development and health through adolescence40. A total of 11,411 MRI scans with 
additional information on sex and age were available from the data release of April 
2019 and, of those, 11,393 images were processed successfully using the four-step 
imaging preprocessing described above.

In total, 10,627 individuals from the ABCD dataset provided genetic data 
on 517,724 SNP variants. These were imputed via the Odyssey92 pipeline using 
the SHAPEIT4 (ref. 93) and IMPUTE5 (ref. 94) workflows to phase and impute, 
respectively. The Haplotype Reference Consortium95 reference panel was used 
for imputation. Quality control before phasing and imputation included using 
the Imputation preparation program by the McCarthy Group (https://www.well.
ox.ac.uk/~wrayner/tools/) to check and fix strand, alleles, position and reference/
alternative problems, as well as removing ambiguous A/T and G/C SNPS with 
minor allele frequencies greater than 0.4. See Supplementary Note for more details 
on phasing, imputation and ancestry-based selection. These steps resulted in a 
final replication dataset of 4,470 individuals with preprocessed MRI imaging data, 
representing brain shape, 15.3 million imputed SNPs and 7 covariates (sex, age and 
the first 5 genetic PCs). The minimum and maximum ages of participants in this 

final replication dataset were 8.9 years and 11 years, respectively, with a mean age 
of 9.9 years. Approximately 46.5% were women and 53.5% were men.

Auxiliary trait genome-wide association study summary statistics. We 
collected publicly available genome-wide summary statistics for 26 auxiliary traits 
encompassing neuropsychiatric disorders96–101, behavioral–cognitive traits102–104, 
subcortical volume measures36–38 and immune-related disorders105–108 with limited 
genetic correlation with schizophrenia or bipolar disorder60. In Supplementary Table 
6, we provide links to relevant publications and URLs for these summary statistics.

Point-wise SNP-heritability estimation of the mid-cortical surface. For each 
of the 29,759 vertices of the averaged mid-cortical 3D surfaces in the UKB, 
we computed a multivariate (x, y and z coordinate per vertex), narrow-sense 
heritability from common SNP variants using a linear mixed model (LMM). 
A genomic relationship matrix modeled as random effects in the LMM was 
computed from LD-pruned SNPs (PLINK 1.9; window size of 50, step size of 
5, 0.2 r2). The first ten genetic PCs and additional covariates (sex, age, height, 
weight and diastolic and systolic blood pressure) were modeled as fixed effects 
in the LMM. We used the open-source software SNPLib (https://github.com/
jiarui-li/SNPLIB/)109, whose implementation is equivalent to that of GCTA110 for a 
homogeneous population.

Global-to-local segmentation of the mid-cortical surface. The UKB served as 
the discovery cohort using a data-driven global-to-local segmentation of brain 
shape similar to previous work on face shape7,111. First, the superimposed and 
symmetrized mid-cortical surfaces were corrected using a partial least-squares 
regression (PLSR) with the function ‘plsregress’ in MATLAB 2019b for all UKB 
covariates listed above, augmented with centroid size to eliminate allometric 
effects of size on brain shape91. Second, pairwise structural connections based on 
the RV coefficient112 between each pair of 3D surface vertices generated a squared 
similarity matrix (29,759 × 29,759). Third, a Laplacian transformation was applied 
to enhance similarities before eigendecomposition of this squared matrix. Finally, 
within the eigenvalue spectral map, we used k-means++ clustering to group 
highly correlated vertices that segment the brain into separate modules. This was 
performed in a bifurcating hierarchical manner using eight levels, resulting in a 
total of 511 hierarchically linked facial segments, with 1, 2, 4, 8, 16, 32, 64, 128 and 
256 nonoverlapping modules at levels 0, 1, 2, 3, 4, 5, 6, 7 and 8. In contrast to our 
work on facial shape7,111, we removed segments with fewer vertices than 1% of the 
total vertex count. This resulted in 285 segments across eight levels (Fig. 1). While 
the precise choice of number of hierarchical levels and vertex cutoff is arbitrary, the 
number of additional segments followed an ‘elbow’ trajectory, with few segments 
being retained at hierarchical levels greater than the ninth (Extended Data Fig. 2). 
Segmentation depth and cutoff criteria were determined before performing GWAS 
analysis. See Supplementary Note for details on the multivariate phenotyping 
approach within each brain segment.

Overlap of brain atlases with global-to-local segmentation. We investigated 
the overlap of brain segments at each of the eight levels from our global-to-local 
segmentation with brain regions from three commonly used brain atlases 
(Desikan-Killiany (34 distinct gyral-based regions)32, Destrieux (74 distinct 
gyral- and sulcal-based regions)33 and the Glasser (180 distinct multimodal-based 
regions)34). See Supplementary Note for details on computing overlap between our 
brain segments and brain atlases.

Global-to-local multivariate genome-wide discovery. The global-to-local 
phenotyping partitioned brain shape into overlapping (across different hierarchical 
levels) and nonoverlapping (within a single hierarchical level) segments, each 
of which was represented by a different subset of mid-cortical surface vertices 
and spanned by multiple dimensions of variation (PCs). See the Supplementary 
Note for details of the CCA-based approach used to discover SNP–phenotype 
associations.

A significance threshold of P ≤ 5 × 10−8 was used to declare ‘genome-wide 
significance’, which corresponds to a Bonferroni correction for 1 million 
independent tests in a European-ancestry cohort113. Due to 285 multivariate 
GWAS runs, the multiple comparisons burden was magnified. Therefore, we also 
determined a more stringent threshold for declaring ‘study-wide significance’, 
which accounts for the effective number of independent tests. In a first instance, 
the number of eigenvalues larger than one of a pairwise multivariate correlation 
(RV coefficient) matrix (285 × 285)114, determined a total of 210 independent tests. 
In a second instance, following the procedure by Kanai et al.115, we obtained an 
empirical estimate of the number of independent tests using the 472 lead SNPs 
representing the genome-wide significant independent loci, to keep the estimations 
computationally tractable. See the Supplementary Note for details on empirical 
estimation of the number of independent tests.

Peak detection, overlap and annotations. We observed 38,630 SNPs and 23,413 
SNPs at the level of genome-wide and study-wide significance, respectively. These 
were clumped into 472 (genome-wide) and 243 (study-wide) independent loci in 
three steps (Supplementary Note).
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To study functional enrichment for genes near the 472 genome-wide lead SNPs, 
we performed Gene Ontology (GO) analysis using GREAT43 (v4.0.4) and FUMA42 
(v1.3.6) with default settings. GO terms that were significant by both binomial 
and hypergeometric tests (FDR q value < 0.05) across three or two windows were 
reported as strongly and weakly enriched, respectively.

In determining overlap between lead SNPs from different GWASs, we used a 
similar strategy: two lead SNPs tag the same genetic locus if they are within 10 kb 
of each other or if they are within 1 Mb of each other and with an r2 > 0.2. To 
quantify the overlap between the 472 brain shape loci and 430 other studies from 
the NHGRI-EBI GWAS Catalog, we defined LD blocks of 0.2 around the 472 
loci using PLINK v1.9, and then calculated the OR and P value for the overlap 
between these blocks and any given GWAS using bedtools v2.27.1 with the  
fisher function.

In determining brain–face shared loci, we first considered the 472 
genome-wide lead SNPs from the brain GWAS and looked for any SNP within 
10 kb or within 1 Mb and LD > 0.2 of these lead SNPs with at least a genome-wide 
suggestive association (P < 5 × 10−7) association with face shape111. This resulted in 
57 loci with evidence of association in brain and face shape. Then we took the 203 
genome-wide lead SNPs reported in the face GWAS111, and clumped them if two 
lead SNPs were within 10 kb or within 10 Mb with an r2 > 0.01. For the resulting 
197 independent genome-wide facial lead SNPs, we selected any SNP within 10 kb 
or within 1 Mb and with r2 > 0.2 with at least suggestive (P < 5 × 10−7) association 
with brain shape. This resulted in another 54 loci with evidence of association in 
brain and face shape and, together with the previous 57 loci, they were clumped 
(within 10 kb or within 1 Mb and an r2 > 0.2) into a final set of 76 brain–face 
shared loci.

We manually identified candidate genes in the vicinity of the 76 brain–face 
shared loci. For each locus, we first considered all genes within 500 kb of the lead 
SNP. We primarily relied on evidence for involvement of these genes in a human 
craniofacial or neurodevelopmental syndrome, or for evidence of craniofacial 
or neurodevelopmental defects in knockouts of their orthologs in mice. We also 
considered associations with GO terms related to craniofacial development, 
neurodevelopment or skeletal system development. In some cases (that is, SOX9, 
where enhancer–promoter interactions over 1 Mb have been described52), we 
extended the window to within 750 kb of the lead SNP.

Adolescent Brain Cognitive Development Study replication testing. The ABCD 
Study data were used for replication, with the UKB discovery cohort used as a 
phenotyping reference. First, after generalized Procrustes superimposition, the 
superimposed and symmetrized mid-cortical shapes were corrected for sex, age 
and the first five genetic PCs, augmented with centroid size to eliminate allometric 
effects of size on brain shape91 using PLSR. Second, the PLSR residuals that were 
centered on average brain shape of the ABCD Study were added to the average 
brain shape of the UKB. Third, the corrected and re-centered brain shapes were 
segmented using global-to-local segmentation and projected onto the PCs of the 
UKB segments.

For each discovery lead SNP in a particular brain segment, the replication 
panel was projected onto the latent shape trait of the lead SNP. This generated 
univariate projection scores as phenotypes116 to test for in the replication panel that 
are equivalent to the latent shape traits or phenotypes in the discovery panel. See 
the Supplementary Note for details on replication testing and FDR thresholds117.

Clinical gene-panel overlap. Gene panels were downloaded from the Genomics 
England PanelApp website. Only panels used for clinical interpretation in the 
100,000 Genomes Project were selected (provided by PanelApp44). The clinical gene 
panels were merged in disease (sub)categories according to the 100,000 Genomes 
Project criteria (for example, the clinical gene panel ‘Intellectual Disability’ belongs 
to the subcategory ‘Neurodevelopmental Disorders’, which is part of the ‘Neurology 
and Neurodevelopment’ disease category). Only genes with high confidence 
for gene–disease association were included in the clinical gene panels. See the 
Supplementary Note for details on calculation of gene set overlaps and significance.

Expression analyses of candidate genes at brain–face overlapping loci. Gene 
expression levels (log2(TPM) values) for 3D forebrain organoids and purified 
neuronal or glial lineages were obtained from Trevino et al.53 (GSE132403). Raw 
RNA-sequencing reads from CNCCs at passages 1–4, as well as day 9 chondrocytes 
derived from P4 CNCCs, were obtained from Long et al.52 (GSE145327), and 
TPM values were quantified using kallisto (v0.44.0)118 with sequence-biased bias 
correction.

Linkage disequilibrium score regression SNP heritability for multivariate 
traits. In the Supplementary Note, we show that when applying LDSC to summary 
statistics of a multivariate GWAS, albeit with a small correction to the resulting χ2 
statistics, the heritability estimated by the LDSC slope is equal to 1D trace

(

ΣGΣ−1
P

)

, 
which is a D-dimensional generalization of heritability for genetic and phenotypic 
covariance matrices ∑G and ∑P, respectively. When the dimensions of the 
multivariate trait are either genetically or phenotypically uncorrelated, this 
expression simplifies to the average SNP heritability across dimensions. Similarly, 
when applying S-LDSC, enrichments for partitioned average heritability are 

obtained. We further show that 1D trace
(

ΣGΣ−1
P

)

 is an appropriate multivariate 
generalization of heritability since it satisfies the following four properties: (1) 
invariance to units of measurement, (2) coordinate-free, (3) linear in ∑G, and (4) 
maximized with a value of 1 when ∑G = ∑P.

Thus, for brain and face shape, we applied LDSC and S-LDSC using published 
software (https://github.com/bulik/ldsc/wiki/) to corrected χ2 statistics from 
GWAS data of each brain or face segment. We used unmodified χ2 values for 
the univariate traits analyzed (including indicated cases where we performed 
individual, univariate GWAS analysis for each brain and face shape PC). While 
using unmodified χ2 values results in a small bias, we used unmodified statistics 
for consistency with previous studies. We limited S-LDSC analyses to traits with 
SNP-heritability z-scores > 7, as in the work of Finucaine et al.67.

Functional annotations for stratified linkage disequilibrium score regression. 
We downloaded a range of publicly available cell-type and sample-specific 
annotations representing open chromatin and/or active regulatory regions. 
Specifically, we obtained data on open chromatin (all ATAC–seq peaks) from 
brain organoids53, fetal brain tissue119 and CNCCs and derived chondrocytes52. 
ATAC–seq reads from Long et al. were mapped to hg19 with bowtie2 (ref. 120) 
with default settings, and peaks were called using MACS2 (ref. 121) with default 
settings. Annotations for active regulatory regions (based on a range of epigenomic 
marks) were obtained from CNCCs68, embryonic craniofacial tissues69, fetal 
and adult brain tissue70 and broad groupings of cell types67. For CNCCs68, we 
combined all regions annotated as enhancers (weak, intermediate and strong) or 
promoters (weak and strong). For embryonic craniofacial tissues, we combined 
all regions with the following annotations from the 25-state chromHMM model: 
‘Enh’, ‘TxReg’, ‘PromD1’, ‘PromD2’, ‘PromU’ and ‘TssA’. For fetal and adult brain 
tissue, we combined all regions with the following annotations from the 15-state 
chromHMM model: ‘1_TssA’, ‘2_TssAFlnk’, ‘7_Enh’ and ‘6_EnhG’. Each annotation 
was individually added to the baseline LD model from Finucaine et al. The 
resulting S-LDSC output (heritability fold-enrichment magnitude and significance 
and coefficient z-scores) is provided in Supplementary Data 2. When quantifying 
heritability enrichments with brain–face shared loci removed, we removed all SNPs 
within approximately the same independent LD block122 as any of the 76 brain–face 
shared loci and recomputed LD scores.

Quantifying sharing of signals between pairs of GWAS. To assess the extent to 
which genome-wide profiles of association were shared between a pair of GWAS, 
we computed a Spearman correlation between two vectors of LD-block organized 
association P values. First, genome-wide SNPs were selected to overlap with the 
HapMap3 SNPs123, and SNPs within the major histocompatibility complex region 
were removed. Second, we organized SNPs within 1,725 blocks in the human 
genome that can be treated as approximately independent in individuals of 
European ancestry122. For every LD block, we computed the mean SNP −log10(P 
value), and then computed a rank-based Spearman correlation using the averaged 
association value (n = 1,725) for each LD block. A standard error of the Spearman 
correlation was estimated using statistical resampling with 100 bootstrap cycles 
with replacement from the 1,725 LD blocks.

Ethics statement. This study was conducted in compliance with the principles 
of the Declaration of Helsinki, the principles of Good Clinical Practice and in 
accordance with all applicable regulatory requirements. Local ethics review and 
approval for this study (S63179) was performed and obtained from the ethical 
committee for research of the University Hospital UZ Leuven and the University 
KU Leuven.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the data and detailed information for the UKB, including genetic markers, 
covariates and MRI images are available to bona fide researchers via the UKB data 
access process (http://www.ukbiobank.ac.uk/register-apply/).
All the data and detailed information for the ABCD Study, including genetic 
markers, covariates and MRI images are also available to bona fide researchers 
through the ABCD data depository (https://nda.nih.gov/abcd/request-access/; 
controlled access due to highly identifiable facial scans and brain MRIs linked to 
genotype data).
Relevant data and materials from the facial GWAS study are available online 
(https://doi.org/10.6084/m9.figshare.c.4667261)124. Full facial GWAS summary 
statistics are available from the NHGRI-EBI GWAS catalog (study accession 
GCST90007181). Furthermore, relevant files generated from the face and brain 
GWAS summary statistics as input to (S-)LDSC regression and Spearman 
correlations are available on FigShare (Supplementary Table 7). Full brain GWAS 
summary statistics are available from the GWAS catalog under prepublished/
unpublished studies (accessions GCST90012880–GCST90013164, one accession 
number per brain segment). Gene expression data from 3D forebrain organoids 
(accession GSE132403) as well as CNCCs and derived chondrocytes (accession 
GSE145327) are available through the Gene Expression Omnibus.
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All relevant additional data related to this work are provided in the FigShare 
repository for this work (https://doi.org/10.6084/m9.figshare.c.5089841.v1). This 
includes additional figures, input files and updated implementations, listed in 
Supplementary Table 7.

Code availability
MATLAB implementations of the hierarchical spectral clustering to obtain 
phenotypic shape segmentations are available from a previous publication (https://
doi.org/10.6084/m9.figshare.7649024.v1)7. Updated implementations used in 
this work are provided in Supplementary Table 7. The statistical analyses in this 
work were based on functions of the statistical toolbox in MATLAB (Methods). 
Other materials and software used are available online. No other custom software 
packages were used.
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Extended Data Fig. 1 | Number of additional brain shape loci contributed by hierarchical levels. For all genome-wide (left) or study-wide (right) 
significant associations, associations with all segments in hierarchical levels up to the indicated number were masked, and the number of remaining 
associations was assessed.
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Extended Data Fig. 2 | Point-wise SNP heritability estimates across the mid-cortical surface. Colors represent the total SNP heritability (computed by 
a linear mixed model approach, see Methods) at each point on the mid-cortical surface, represented by a set of three-dimensional coordinates in each 
individual.
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Extended Data Fig. 3 | Replication rates in the ABCD cohort by hierarchical level. Only segments in the indicated hierarchical level were considered,  
and all loci (left) or locus-segment pairs (right) reaching genome-wide significance in those segments were tested for replication in the ABCD cohort  
at a 5% FDR.
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Extended Data Fig. 4 | Overlap between genome-wide significant brain shape loci and genome-wide significant loci from 430 other studies. GWAS 
hits (number on x-axis) for other studies were obtained from the NCBI-EBI GWAS Catalog, and P-values (left, y-axis) and odds ratios (right, y-axis) for 
significance of overlap with regions in LD (> 0.2) with brain shape loci were computed using bedtools’ fisher function (see Methods). Note that relative to 
other traits with equivalent numbers of GWAS hits, face shape shows overlap with brain shape loci greater in both significance and magnitude.
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Extended Data Fig. 5 | Comparison of LDSC genetic correlations and Spearman correlation between pairs of univariate traits. Each point represents 
a pair of univariate traits (of all those considered in this study, see Methods), while the x- and y-axes indicate the absolute value of the LDSC-estimated 
genetic correlation and the estimated genome-wide sharing of effects by the Spearman correlation method. Point colors and shapes indicate significance 
(P < 0.05) from LDSC or the Spearman correlation method, respectively. Exact p-values are provided in Supplementary Table 6.
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Extended Data Fig. 6 | Genetic correlations between RA (rheumatoid arthritis) and univariate brain-related traits. Points (center of error bars) represent 
estimated genetic correlations. Error bars represent 95% confidence intervals. *, 5% FDR.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNaTurE GEnETicS

Extended Data Fig. 7 | Genetic correlations between the most heritable brain (top two rows) or face (bottom two rows) shape PCs and other traits. 
Points (center of error bars) represent estimated genetic correlations (rg) between the top ten shape PCs (for segment 1, the full brain or face) with 
heritability z-score > 3 and each of the indicated univariate traits using LD score regression. Error bars represent 95% confidence intervals. *, 5% FDR for 
indicated PC; +, 10% FDR.
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Extended Data Fig. 8 | SNP heritability of individual face shape PCs and multivariate face shape estimated by LDSC. Points (center of error bars) 
represent estimated SNP heritability of each PC. Error bars represent 95% confidence intervals. The red line represents the mean heritability of all 70 PCs, 
and the blue line indicates the heritability obtained by applying LDSC to corrected χ2 statistics from the multivariate CCA GWAS using all 70 PCs.
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Extended Data Fig. 9 | Partitioned heritability enrichments for brain shape with respect to stage- and cell-type-specific brain organoid open chromatin. 
S-LDSC coefficient Z-scores and heritability fold-enrichment for annotations corresponding to the indicated cell-type and differentiation day were 
computed as described in Methods. Regression lines represent the linear best fit with intercept and organoid differentiation day as dependent variable, and 
grey areas represent 95% confidence intervals. P-values are from a two-tailed F-test.
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Extended Data Fig. 10 | Partitioned heritability enrichments for brain shape with respect to open chromatin in CNCCs or early glial organoid cells, with 
or without 76 brain-face shared loci. S-LDSC Z-scores were calculated using full brain shape as the trait and the most enriched craniofacial (top) or brain 
organoid (bottom) ATAC-seq dataset as annotations. Z-scores were re-estimated (blue) after removing all SNPs in the same approximately independent 
LD block as one of the 76 brain-face shared loci (see Methods for details).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection as part of this study.

Data analysis Matlab implementations of the hierarchical spectral clustering to obtain phenotypic shape segmentations are available from a previous 
publication https://doi.org/10.6084/m9.figshare.7649024.v1). Updated implementations used in this work are provided, (https://
doi.org/10.6084/m9.figshare.c.5089841.v1). The statistical analyses in this work were based on functions of the statistical toolbox in Matlab 
as mentioned throughout the Methods. Other materials and external software used mentioned throughout the methods, are all available 
online (see URL section). The following versions of software were used: SHAPEIT4, IMPUTE5, plink 1.9, bowtie2, MACS2, bedtools v2.27.1, 
kallisto v0.44.0, FreeSurfer v6.0.0
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

All the data and detailed information for the UK Biobank, including genetic markers, covariates and MRI images are available to bona fide researchers via the UK 
Biobank data access process (see http://www.ukbiobank.ac.uk/register-apply/). 
All the data and detailed information for the ABCD study, including genetic markers, covariates and MRI images are also available to bona fide researchers through 
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the ABCD data depository (https://nda.nih.gov/abcd/request-access) 
Relevant data and materials from the facial GWAS study are available online (https://doi.org/10.6084/m9.figshare.c.4667261). The full facial GWAS summary 
statistics are available on the NHGRI-EBI GWAS catalog (study accession GCST90007181). Furthermore, relevant files generated from the face and brain GWAS 
summary statistics as input to (S-)LDSC regression and spearman correlations are available on FigShare, see Supplementary Table 8. The full brain GWAS summary 
statistics are available on the GWAS catalog (study accession GCST90012882). 
 
All relevant additional data related to this work are provided in the FigShare repository for this work (https://doi.org/10.6084/m9.figshare.c.5089841.v1). This 
includes additional figures, input files and updated implementations, listed in Supplementary Table 8.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. Sample sizes were determined to be sufficient based on results of previous 
GWAS of brain phenotypes with similar sample sizes. Sample size was maximized based on data availability in the UK Biobank, after excluding 
samples that failed image processing, were outliers with respect to covariates, or had non-European ancestry. 

Data exclusions MRI images were excluded if they failed any steps of the surface reconstruction and segmentation pipeline, as described in detail in Methods. 
Individuals with extreme outlier values for certain covariates were excluded, as described in Methods. Individuals of primarily non-European 
descent as well as related individuals were excluded, as described in Methods. These exclusionary measures were determined prior to 
performing GWAS analysis.

Replication Effects of the 472 genome-wide significant loci for brain shape were subject to a single replication analysis using MRI images from the ABCD 
cohort. Of the 472 loci, 466 were available for testing in the ABCD cohort after imputation and filtering. Of these 466, 305 (65.4%) replicated 
at least one associated segment at 5% FDR.

Randomization MRI images were assigned into groups based on SNP genotypes. Images were adjusted for sex, age, height, weight, diastolic and systolic blood 
pressures, and 10 principal components representing ancestry components.

Blinding Investigators were not blinded to group allocation. While individual genotypes had to be accessed to perform quality control and filtering, the 
group allocation was based on individual genotypes and so could not be changed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The UK Biobank project (UKB) is a large dataset of about 500,000 British volunteers with informed consent containing 
genetics, non-imaging variables and brain imaging data acquired using a fixed protocol

Recruitment Participants were recruited by the UK Biobank. Selection bias in the UK Biobank has been observed to favor healthy, 
European-ancestry individuals.
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Ethics oversight This study was conducted in compliance with the principles of the Declaration of Helsinki, the principles of GCP and in 
accordance with all applicable regulatory requirements. Local ethics review and approval for this study (S63179) was 
performed and obtained from the ethical committee for research of the University Hospital UZ Leuven and the University KU 
Leuven. Collection of the data in the UK Biobank was governed by the Ethics and Governance Council of the UK Biobank. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Resting state

Design specifications https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf

Behavioral performance measures Not applicable

Acquisition

Imaging type(s) T1-weighted structural imaging

Field strength 3T

Sequence & imaging parameters page 8 in https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf

Area of acquisition Whole brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Standard T1 preprocessing steps are described on page 12-13 in https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
brain_mri.pdf. Followed by Freesurfer recon-all and ciftify as described in the methods

Normalization page 12-13 in https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf

Normalization template T1 preprocessing involved the MNI152 template (page 12-13 in https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
brain_mri.pdf). Ciftify output used is based on the low resolution Conte69 cortical surface template for left and right 
hemisphere as described in the methods.

Noise and artifact removal Freesurfer embedded noise and artifact removal. Additional imaging covariates, volumetric scaling from T1 head image to 
standard space, XYZ-position of brain mask in scanner co-ordinates, Z-position of table/coil in scanner co-ordinates, date of 
attending assessment center, and assessment center were used to correct the brain surface data using partial least square 
regression.

Volume censoring Not applicable

Statistical modeling & inference

Model type and settings Multivariate shape analysis

Effect(s) tested Fixed effects of SNP genotypes on multivariate shape variables

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Hierarchical data-driven shape segmentation as described in the methods and applied elsewhere on 3D 
facial shapes

Statistic type for inference
(See Eklund et al. 2016)

Surface-based and not voxel-based multivariate shape variables, subjected to association with SNP genotypes using canonical 
correlation analysis

Correction Correction of multivariate shape variables for covariates was performed using partial least squares regression. Correction for 
multiple testing was performed based on permutations, followed by an adjusted study-wide p-value threshold by devision of 
the less stringent genome-wide threshold by the effective number of tests.
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis For each of the 285 brain segments separately, the group of 3D surface vertices in a segment were subjected 
to a new GPA. As such, a multivariate shape-space for each brain segment was constructed independently of 
the other segments and its relative positioning within the full brain hemisphere. Subsequently, after GPA, 
each segment’s shape-space was spanned by a multivariate orthogonal basis using PCA on the pooled x, y 
and z coordinates of the collection of superimposed vertices in that segment. Finally, we retained enough 
PCs to explain up to 80% of the total shape variation within each segment. Associations of multivariate shape 
spaces with SNP genotypes were tested using canonical correlation analysis.
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