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Abstract

Standard genome-wide association studies (GWAS) and rare variant burden tests are essential
tools for identifying trait-relevant genes. Although these methods are conceptually similar,
we show by analyzing association studies of 209 quantitative traits in the UK Biobank that
they systematically prioritize different genes. This raises the question of how genes should
ideally be prioritized. We propose two prioritization criteria: 1) trait importance — how much
a gene quantitatively affects a trait; and 2) trait specificity — a gene’s importance for the trait
under study relative to its importance across all traits. We find that GWAS prioritize genes
near trait-specific variants, while burden tests prioritize trait-specific genes. Because non-coding
variants can be context specific, GWAS can prioritize highly pleiotropic genes, while burden
tests generally cannot. Both study designs are also affected by distinct trait-irrelevant factors,
complicating their interpretation. Our results illustrate that burden tests and GWAS reveal
different aspects of trait biology and suggest ways to improve their interpretation and usage.
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Introduction

A central goal of human genetics is to identify which genes affect traits and disease risk and to
what extent. This is essential for addressing fundamental questions such as: What biological
processes underlie trait variation? Which genes and pathways are most critical for understanding
those processes? Which genes could serve as potential therapeutic targets?

While many techniques exist to study gene function in model systems or in vitro (e.g., [1–3]),
the study of organism-level traits in humans largely relies on naturally occurring genetic variation,
primarily through genome-wide association studies (GWAS) [4].

GWAS have been deeply informative about the genetic basis of complex traits, from uncover-
ing actionable drug targets [5] to identifying trait-relevant cell types and programs [6–9]. How-
ever, it remains unclear how best to extract biological insight from GWAS results. First, GWAS do
not directly pinpoint relevant genes, as most associated variants are non-coding [10]. Moreover, a
surprisingly large fraction of the genome contributes to the heritability of many traits [11–13], and
associated variants often cannot be mapped to genes with clear phenotypic relevance.

Recently, large whole-exome and whole-genome sequencing datasets have enabled the direct
study of genes through rare protein-coding variants, which have typically been excluded or un-
derpowered in GWAS [14]. To boost statistical power, these variants are analyzed using burden
tests [15,16]. Burden tests aggregate variants — typically loss-of-function (LoF) variants — within
a gene to create a “burden genotype”, which is then tested gene-by-gene for association with phe-
notypes. This is similar to common-variant GWAS but focused on rare variants collapsed at the
gene level.

Despite this conceptual similarity, recent work has found anecdotally that LoF burden tests
and GWAS discover distinct genes, though with some overlap [17, 18]. In a systematic analysis,
Weiner et al. found that burden tests appear less polygenic and tend to prioritize genes that are
seemingly more closely related to trait biology [19].

To better understand these differences, we analyzed the results of GWAS and LoF burden tests
for 209 quantitative traits in the UK Biobank [14, 16, 20]. We show that burden tests and GWAS
prioritize different genes, and these differences cannot be explained by differences in power or
challenges in linking GWAS variants to genes.

The discrepancy between GWAS and LoF burden tests raises thorny questions. By what crite-
ria does each prioritize genes, and how do these relate to the underlying biology? Which method
is more relevant for understanding trait biology? Which is better suited for downstream applica-
tions, such as drug target discovery?

We analyze association study results and use population genetics models to address these
questions. Our results show that burden tests tend to prioritize trait-specific genes — those pri-
marily affecting the studied trait with little effect on other traits — while GWAS also capture more
pleiotropic genes often missed by burden tests. Additionally, we highlight the impact of trait-
irrelevant factors on discovery, such as gene length and random genetic drift. Ultimately, GWAS
and LoF burden tests reveal distinct but complementary aspects of trait biology, with important
implications for interpreting and using association studies.
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Results

LoF burden tests and GWAS prioritize different genes

GWAS and LoF burden tests are conceptually similar (Figure 1A,B), but previous studies have
highlighted key differences in their findings [19]. To more thoroughly quantify how concordant
these methods are in prioritizing genes and genomic loci based on p-values, we systematically
compared GWAS and LoF burden test results for 209 quantitative traits from the UK Biobank [16]
(Methods).

In principle, discordance between GWAS and LoF burden test results could be driven by tech-
nical artifacts. The causal genes driving GWAS hits are usually unknown, and errors in linking
hits to genes could reduce the overlap between genes prioritized by the two study designs. Ad-
ditionally, LoF burden tests typically discover fewer genes than GWAS. Hence, some discordance
could potentially be driven by differences in power.

To minimize these technical effects, we maximized overlap whenever possible and controlled
for power. We defined GWAS loci by taking a 1Mb window around each genome-wide significant
GWAS hit and merging overlapping windows. We ordered these loci by the minimum GWAS
p-value within the locus, and considered sufficiently significant loci “top GWAS loci”, with the
significance threshold chosen so that there were an equal number of top GWAS loci and genome-
wide significant LoF burden test genes. Across traits we found that only 26% of significant LoF
burden genes (480 out of 1852) are contained in a top GWAS locus (Figure 1C, Supplementary
Figure S1, Methods).

Figure 1D shows the minimum LoF burden test and GWAS p-values for the 382 genome-wide
significant GWAS loci for height. The results of the two study designs are somewhat concordant
(Spearman’s ρ = 0.46), suggesting that they are not uncovering totally disparate axes of biology.
Yet, there is little overlap in the top hits, with many significant GWAS loci not containing a single
significant burden gene. This pattern is not unique to height (Supplementary Figures S2 and S3),
and these results are robust to how we partition the genome into loci or if we look at signals in LD
blocks instead of GWAS loci (Supplementary Figures S4–S7).

To further explore this lack of overlap, we considered two examples of discordantly ranked
loci. Figure 1E shows the NPR2 locus. NPR2 is the second most significant gene in the LoF burden
tests, but it is contained in the 243rd most significant GWAS locus. That this locus is significant
in both association tests is not surprising: mutations in NPR2 have been linked to short stature in
humans and mice [21–26]. Yet, hundreds of loci are more strongly prioritized by GWAS, including
the HHIP locus (Figure 1F). The HHIP locus has numerous uncorrelated GWAS hits (r2 < 0.1)
with p-values as small as 10−185. HHIP is a biologically sensible hit for height [27] as HHIP has
been implicated in osteogenesis [28], and interacts with three different hedgehog proteins [29,30],
which are involved in body patterning and limb formation [31]. Nonetheless, there is essentially
no burden signal for HHIP or any of the other genes in the locus. These differences motivated us
to explore why GWAS and LoF burden tests might rank loci so differently.
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Figure 1: GWAS and LoF burden tests prioritize different loci.
Schematics of A) GWAS and B) LoF burden tests. C) Bar charts of genome-wide significant LoF burden test genes,
split by whether or not the gene overlaps a top GWAS locus. D) Minimum LoF burden test p-values for any genes
overlapping a genome-wide significant GWAS locus plotted against the minimum GWAS p-value within the locus.
E) The genomic region surrounding NPR2. Top panel: GWAS p-values of approximately independent genome-wide
significant GWAS hits. Bottom panel: location of genes colored by LoF burden test p-values. F) Similar to E for the
genomic region surrounding HHIP.

4



How should genes be prioritized?

Given the extensive differences in how GWAS and LoF burden tests rank genes, we are faced with
an underexplored question: if we could precisely measure any possible quantity of interest for
each gene, what properties would make us want to rank one gene higher than another for a given
trait? That is, how should genes ideally be prioritized?

We propose two distinct properties by which one may wish to prioritize genes: trait impor-
tance and trait specificity. Imagine a gene that is only expressed in developing bones and whose
disruption results in shorter stature but has minimal effects on other traits (Figure 2A). In some
sense this is a quintessential “height gene”, and we might want this gene to be highly ranked in
association studies. On the other hand, consider a broadly expressed transcription factor whose
disruption results in an even greater reduction of height, but also disrupts the normal functioning
of numerous organ systems. This is less obviously a “height gene”, but it has a larger impact on
height than the first gene. We define trait specificity and trait importance such that the first gene
has higher trait specificity, but the second gene has higher trait importance.

Formally, we define the trait importance of a variant as its squared effect on the trait of interest,
considering high-impact variants important regardless of the direction of their effect. We define
the trait importance of a gene as the trait importance of LoFs in that gene. Throughout, we use αt to
refer to the effect size of a variant on trait t, and γt to refer to the LoF burden effect size of a gene,
so trait importance for trait 1 would be α2

1 and γ2
1 for variants and genes respectively. Throughout

we will always take the trait under study to be trait 1.

Trait specificity is then defined as importance for the trait of interest relative to importance
across all fitness-relevant traits measured in the appropriate units (Figure 2B). We denote trait
specificity by ΨV := α2

1/ ∑t α2
t for variants and ΨG := γ2

1/ ∑t γ2
t for genes. See Appendix A for

more details. Ideally, association studies would prioritize genes based on trait importance, trait
specificity, or some combination of the two.

Burden tests prioritize trait-specific genes

To determine how LoF burden tests prioritize genes, we analyzed population genetics models of
association studies (Appendix A). Our analysis revealed that LoF burden tests prioritize genes in
part by their trait specificity, and not by importance (Figure 3A). We briefly outline the argument
here.

In an LoF burden test, the strength of association, z2, for a gene depends on both its trait im-
portance, γ2

1, and the aggregate frequency of LoFs, pLoF, with the expected strength of association
being proportional to γ2

1 pLoF(1 − pLoF).

Natural selection acts to keep LoFs rare: for sufficiently strong selection, pLoF(1 − pLoF) is
proportional to µL/shet, where µ is the per-base mutation rate, L is the number of sites where an
LoF could occur, and shet is the strength of selection in heterozygotes [32]. As expected, there is
a strong negative relationship between recently inferred estimates of shet [33] and the average of
pLoF across genes within shet bins (Figure 3B, Supplementary Figure S8).

Furthermore, many complex traits are thought to be under stabilizing selection [34–37]. Cru-
cially, this predicts a connection between shet and total trait effects. Specifically, shet ≈ ∑t γ2

t , where
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Figure 2: How should genes be prioritized?
A) A cartoon of two genes that affect a trait under study. Widths of arrows represent relative effect sizes. Gene 1 is
more trait specific but Gene 2 is more trait important. B) Formal definitions of trait importance and trait specificity
for genes in the context of LoF burden tests. The effect of an LoF in the gene on trait t is γt, with trait 1 being the
study trait. We define trait importance as γ2

1 and trait specificity as γ2
1/ ∑t γ2

t .

∑t γ2
t is the sum of trait importances across all fitness relevant traits measured in appropriate units

(Appendix A). To test this prediction, we computed unbiased estimates of trait importance from
LoF burden test results for 27 genetically uncorrelated traits (Methods). The average trait impor-
tance across these traits shows a strong positive relationship with shet as predicted by our model
(Figure 3C).

Combining these results, we see that the strength of association in LoF burden tests is pro-
portional to γ2

1/ ∑t γ2
t (Figure 3A). This is exactly our definition of ΨG, the trait specificity of a

gene.

A key implication of this result is that LoF burden tests do not prioritize genes based on trait
importance. The most trait-important genes will often be the most constrained and have the
smallest frequencies (and hence largest standard errors), an effect previously referred to as flat-
tening [38,39]. Indeed, Figure 3D shows that, for genes with sufficiently large effects, the strength
of association (z2 := (γ̂1/SE(γ̂1))

2) is completely decoupled from trait importance in the UKB LoF
burden tests.

Instead, our theory predicts that LoF burden tests prioritize genes by their trait specificity, ΨG.
To confirm this prediction, we would ideally compare strength of association to an independent
measure of ΨG. It is difficult to directly estimate ΨG independently of our theory as it depends
on the unknown true trait importances. Instead we use how specifically-expressed a gene is as
a proxy. Our intuition is that genes expressed predominantly in a trait-relevant tissue are more
likely to be trait specific than broadly-expressed genes.

To explore this, we selected 9 traits for which at least 40% of heritability was attributable to
a single tissue in the ChIP Atlas [40]. For each trait, we focused on genes expressed in the top
matched tissue and stratified them into quintiles of expression specificity, determined by their
expression level in the focal tissue relative to the average across all the tissues we analyzed in the
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Human Protein Atlas (Methods) [41].

Using results from the LoF burden tests for these 9 trait-tissue pairs, we constructed a quantile-
quantile plot (Figure 3E). Consistent with our intuition, we observed substantially stronger signals
in the most specific expression bins. We also observed that many of the top hits are plausibly quite
trait specific (Figure 3E). We found concordant results in a regression model that predicts LoF bur-
den z2 from expression specificity even after controlling for differences in effect sizes (Supplemen-
tary Figure S9).

GWAS prioritize trait-specific variants

We next turned to understanding how GWAS prioritizes genes. In contrast to LoF burden tests,
GWAS are performed at the variant level, and so we consider what causes a variant to be ranked
highly. Following the same argument as above reveals that the expected strength of association
is proportional to α2

1/ ∑t α2
t , the trait importance of the variant for the trait under study relative

to the total trait importance of the variant across all fitness-relevant traits. This is exactly ΨV , the
trait-specificity of the variant.

The fact that GWAS prioritizes trait-specific variants rather than genes has profound impli-
cations for understanding the differences between GWAS and LoF burden tests. In particular,
variants can be trait specific in two ways (Figure 4A): they can either affect a trait-specific gene
(e.g., variant 3 in Figure 4A) or affect a pleiotropic gene in a context-specific manner (e.g., variant
1 in Figure 4A). For example, context-specific variants might regulate expression only in trait-
relevant cell types or at particular developmental time points, and thus have trait-specific effects
even when acting on pleiotropic genes. In Appendix B, we develop a model formalizing the rela-
tionship between ΨV , ΨG, and context-specific expression.

To test our predictions, we considered the two ways that variants can be trait specific and used
S-LDSC [6, 42] to quantify how heritability changes along these axes. The average heritability
contributed by a set of variants is a proxy for how highly those variants would be prioritized by
GWAS on average. We quantified effects on heritability by τ as reported by S-LDSC, which can be
interpreted as how much a given annotation increases or decreases heritability.

First, we looked into whether the trait specificity of the gene on which a variant acts affects
GWAS prioritization for variants with a given context specificity (moving along the horizontal
axis of Figure 4A). To this end, we restricted our analyses to coding variants and again used the
tissue specificity of each gene’s expression as a proxy for that gene’s ΨG. Overall, variants act-
ing on specifically-expressed genes are more likely to be prioritized highly by GWAS (Figure 4B,
Supplementary Figure S9).

We next examined the impact of context specificity (moving along the vertical axis of Fig-
ure 4A). Here, we used non-coding variants, and we assumed that variants are more likely to
have an effect in a tissue if they are in open chromatin in that tissue as determined by ATAC-
seq [40]. We focused on the 9 trait-tissue pairs we analyzed in Figure 3E. For each variant in an
ATAC peak in the top trait-relevant tissue, we then determined the number of additional tissues in
which the variant is in open chromatin (Methods). We computed τ using S-LDSC as a function of
this ATAC peak tissue specificity while controlling for the strength of the ATAC signal (Methods).
Across all traits we see a strong trend of increasing heritability in more tissue-specific ATAC peaks
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(Figure 4C, Supplementary Figure S11).

Overall, our results show that LoF burden tests and GWAS both prioritize trait specificity, but
prioritize different loci because LoF burden tests prioritize trait-specific genes, while GWAS pri-
oritize trait-specific variants. Variants can be specific either by acting through trait-specific genes
or by being context specific, and both of these axes contribute to a variant being prioritized by
GWAS.

Trait-irrelevant factors affect GWAS and LoF burden tests

Our modeling also revealed factors beyond trait specificity that affect which genes are prioritized
by GWAS and LoF burden tests. These factors can cause one gene to be more highly prioritized
than another for reasons that have nothing to do with their effects on any aspect of trait biol-
ogy. LoF burden tests prioritize genes in part by the length of their coding sequence, and GWAS
prioritize variants in part due to randomness in their frequencies caused by genetic drift.

Gene length drives power in LoF burden tests

LoF burden tests aggregate all LoF variants within a gene (Figure 1B). As we derived above, this
results in an expected strength of association that increases with µL, the average mutation rate
times the number of potential LoF positions within a gene. Intuitively, if a gene has more potential
LoFs, then the proportion of individuals that are LoF carriers will be larger, all else being equal,
resulting in a higher aggregate LoF frequency and increased power.

Our model’s predictions about the impact of gene length are confirmed in the UKB LoF burden
tests. We binned genes based on their expected number of unique LoFs, a measure of µL [43]. This
measure is strongly correlated with coding sequence (CDS) length (Supplementary Figure S12), so
we refer to this as “gene length”. We computed unbiased estimates of the average squared effect
size of the genes, finding little association between gene length and total effect size (Figure 5A).
Meanwhile, longer genes have considerably smaller standard errors on average (Figure 5B). To-
gether, this results in the strength of association (z2) correlating strongly with gene length (Fig-
ure 5C), even though longer genes are generally not more trait important.

Random genetic drift drives power in GWAS

We showed above that the expected strength of association in GWAS is proportional to a vari-
ant’s trait specificity, ΨV . This is true on average, but there is considerable variation around this
expectation. In well-powered GWAS, variants are ranked by 2α2

1 p(1 − p), where p is the variant
allele frequency (Appendix A). We refer to 2α2

1 p(1− p) as a variant’s realized heritability. Under our
modeling assumptions, the expected value of p(1 − p) is 1/ ∑t α2

t , resulting in trait-specific vari-
ants being ranked more highly on average. Yet, random genetic drift causes variant frequencies to
be spread widely around their expected values (Supplementary Figure S13).

In LoF burden tests this effect is largely ameliorated by the aggregation of variants, which
averages out the stochasticity in the frequencies of individual LoFs (Appendix A). But GWAS
consider variants one at a time, causing this stochasticity to play a large role in gene prioritization.
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Figure 5: Trait-irrelevant factors drive prioritization in association studies.
A) Average of an unbiased estimate of the squared trait importance, γ2, across 27 genetically uncorrelated traits,
averaged within bins of approximately 184 genes binned by expected number of unique LoFs [43]. The trend line was
fit using LOESS. This analysis was repeated for B) the average of the squared LoF burden test standard errors within
each bin, and C) the average LoF burden test z2 across traits within each bin. D) Simulations of realized heritability
for individual variants with varying trait importances, scaled by the maximum simulated realized heritability. E)
Schematic of the effects of minor allele frequency (MAF) and trait specificity on GWAS p-values. F) The relationship
between MAF and p-value rank for simulations and real data across genetically uncorrelated traits. Genome-wide
significant hits were binned by p-value, and the mean MAF within each bin was compared to the overall mean MAF
across all hits. Black points are results from UKB GWAS, and orange lines are simulations. This analysis was repeated
for G) the mean trait specificity within each bin and H) the mean number of traits for which each hit was genome-wide
significant. Panel G contains only simulations as the trait specificities for the UKB GWAS results are unknown.
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In Figure 5D, we plot simulations of realized heritability under our model (Methods). The
ranking of variants in terms of realized heritability is largely random with respect to trait impor-
tance for sufficiently trait-important variants. This randomness is driven by differences in minor
allele frequency (MAF) caused entirely by genetic drift.

This randomness in MAF explains an apparent contradiction between our finding that GWAS
prioritize trait-specific variants and previous studies that report GWAS hits appearing to be sur-
prisingly pleiotropic [44–46]. Consider performing GWAS on two traits (Figure 5E). If a variant
is trait specific for one trait, then by definition it cannot be trait specific for the other trait. In
the absence of other forces, this results in a negative relationship between the strength of asso-
ciation for the two traits. In contrast, if a variant has high MAF, then the GWAS for both traits
will be well-powered. All else being equal, randomness in MAF results in a positive relationship
between the strength of association for the two traits. Therefore, variants that are highly ranked
in one GWAS will be enriched for variants that are trait specific (and hence less likely to be hits
for the other trait) but also variants that have high MAF (and hence are more likely to be hits for
the other trait). This explains the supposed contradiction: the top hits for one trait are not actually
more pleiotropic on average than other variants, they are simply at higher MAFs and hence better
powered across all traits.

To see if this prediction of our model is corroborated by the UKB GWAS, we compared prop-
erties of GWAS hits taken from 27 genetically uncorrelated traits to properties of GWAS hits sim-
ulated under our model (Methods). In both cases, we considered all variants that passed the
genome-wide significant threshold as hits, and then partitioned hits into four bins based on their
p-values, with the strongest hits being in bin 1 and the weakest (but still genome-wide significant)
hits being in bin 4.

Our model recapitulates the behavior of the UKB GWAS hits. As predicted by Figure 5E,
the strongest GWAS hits are at higher than average frequencies in both our model and the UKB
GWAS hits (Figure 5F). As mentioned above, trait specificity is difficult to directly measure, so we
cannot assess the trait specificity of the real GWAS hits, but in our simulations, GWAS does indeed
prioritize trait-specific variants (Figure 5G). Finally, consistent with previous studies [44–46], we
find that the top GWAS hits for one trait are hits for other traits more often than weaker GWAS
hits (Figure 5H). We reiterate that on average these hits are in fact more trait-specific despite being
GWAS hits for more traits, and this discrepancy is caused by their higher than expected MAF.
The precise details of our simulation model have a quantitative, but not qualitative effect on these
results (Methods; Supplementary Figures S14–S17)

Approaches for estimating trait importance

We began by proposing that it could be desirable to prioritize genes either by trait importance
or trait specificity. Yet, so far we have shown that when ranking by p-value neither LoF burden
tests nor GWAS rank genes by their trait importance. We wanted to see if there was some way
to use GWAS or LoF burden test results to prioritize genes in a way that is correlated with trait
importance.

In this section, it will be helpful to consider a simplified model where each variant has an effect
β on some gene that has effect γ on the trait, so that the overall effect of the variant on the trait
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is α = βγ (similar to the models in [47]). This assumption is for ease of exposition: in reality, we
have found that α often depends on β non-linearly [48], but this does not qualitatively affect our
results.

Throughout, we have focused on prioritizing genes based on p-value or strength of associa-
tion. It is then natural to ask if ranking genes on some other summary of the association tests
would better prioritize important genes (e.g., the unbiased estimates of trait importance α̂2 for
GWAS or γ̂2 for LoF burden tests). For GWAS, we immediately see that this is not possible with-
out additional information: the relationship between any estimate of α and trait importance will
depend on the unknown value of β.

In principle, if an LoF burden test is infinitely well powered, then ordering genes by γ̂2 would
prioritize genes based on trait importance. At current sample sizes, however, the estimated γ̂2

are noisy enough that the top genes will contain many false positives. For example, among the
10 genes with the largest γ̂2 for standing height, 4 are consistent with actually having no effect
on height (all Bonferroni adjusted p-values > 0.62). Furthermore, if LoFs in a given gene are
extremely deleterious, then LoF burden tests may never be well powered no matter the sample
size, resulting in false negatives.

Estimating trait importance is most difficult for the most important genes, a phenomenon
called flattening [19, 38, 39]. Flattening refers to the expected strength of association (equivalently
the expected contribution to heritability) first increasing as (βγ)2 increases, but then becoming un-
coupled from (βγ)2 for sufficiently large (βγ)2 (Figure 6A; Appendix C). This decoupling causes
association studies to be incapable of prioritizing by trait importance, which we see in LoF burden
tests (Figure 6B), where contributions to heritability are completely uncoupled from shet, which
we use as a proxy for trait importance based on Figure 3B.

Yet, flattening does not affect all variants in the same way. For simplicity we can imagine that
variants either contribute minimally to heritability, or they contribute an amount independent of
their importance (Figure 6A). Now, imagine two genes: one has a large effect on the trait (large γ),
and one has a small effect (small γ). Even variants that weakly perturb the large γ gene will have
large enough (βγ)2 to contribute to heritability, whereas for the small γ gene, only variants with
very large β will contribute to heritability (Figure 6C). Each individual variant will experience
flattening, but collectively there will be more variants that contribute to heritabilty for more trait-
important genes, all else being equal. As a result, we expect the total heritability contributed by
variants acting on a given gene to correlate with that gene’s trait importance.

To test this prediction of our model, we used AMM [49], a method that estimates the heritabil-
ity of variants acting via a given set of genes using GWAS summary statistics (Methods). We found
that compared to LoF burden heritability, this measure of total heritability better tracks shet and
hence trait importance (Figure 6D). The results of this analysis do not rely on the specific details
of AMM: we expect similar results whenever aggregating signals across variants with different β

(e.g., Supplementary Figures S18 and S19; Methods; and [50]).
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into a regime where variants contribute vary little to heritability (black) or their contribution depends very little
on (βγ)2 (red). B) Enrichment of LoF burden test heritability for genes binned by selective constraint shet. The
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Discussion

It is often assumed that GWAS and burden tests converge on similar gene sets [18,51,52]. Indeed,
some genes are implicated by both approaches, such as LDLR for low-density lipoprotein levels
[19, 53]. Generally, GWAS loci are enriched near burden genes and, conversely, burden genes —
as well as genes identified in familial studies of Mendelian counterparts of the same traits — are
enriched within GWAS loci [16, 54].

Here, we find that, despite this overall concordance, LoF burden tests and GWAS rank genes
differently, resulting in limited overlap among the top genes identified by each approach. Our
analysis shows that LoF burden tests prioritize long, trait-specific genes, while GWAS priori-
tize genes near trait-specific variants that have drifted to unexpectedly high frequencies. Because
context-specific variants can be trait-specific even if they act on pleiotropic genes, GWAS can find
trait-relevant, pleiotropic genes that would be missed by LoF burden tests.

These findings have significant implications for interpreting GWAS and LoF burden tests and
their applications. They help explain why burden tests often appear less polygenic than GWAS
and tend to prioritize genes that are seemingly more directly related to trait biology [19]. GWAS
should, in principle, capture all trait-specific genes identified by LoF burden tests, but also identify
highly pleiotropic, selectively constrained, trait-relevant genes.

The fact that we find numerous examples of GWAS loci with essentially no LoF burden signal
suggests that such highly pleiotropic genes are major drivers of complex traits. We hypothesize
that some of these genes have developmental roles and that GWAS heritability is partly driven by
context-specific variation that perturbs developmental trajectories in a trait-specific manner [55].

While both study designs identify sufficiently trait-important genes, neither directly ranks
genes by trait importance. LoF burden tests estimate trait importance, but selection causes estima-
tion noise to increase with gene effect size, making rankings by significance nearly independent
of trait importance. Gene length is also a major confounder. Although larger sample sizes will
help reduce noise, we anticipate that Bayesian frameworks using priors based on gene features,
such as our recent approach to estimating shet [33], could be particularly effective for improving
the accuracy of burden tests.

In GWAS, genetic drift makes the p-values of individual variants essentially arbitrary as long
as the variants are sufficiently trait specific and important. This makes variant-level ranking of
GWAS loci inefficient for identifying top genes. Instead, genes can be prioritized by trait im-
portance using non-standard GWAS approaches that aggregate signals across multiple variants
(e.g., [49, 50, 56, 57]), motivating further development of such methods.

Our findings also explain why GWAS results are highly effective for identifying trait-relevant
tissues and cell types using approaches like S-LDSC [6]. Variants that are only active in trait-
relevant cell types are much more likely to be trait specific, and thus contribute more to heritability.
This is not necessarily because such variants have larger effect sizes, but rather that for a given
effect on the trait they are at higher frequencies on average.

The question of how genes should ideally be prioritized is surprisingly understudied. Here we
propose ranking genes based on either trait importance or trait specificity. Both concepts capture
different aspects of what it means for a gene to be “relevant” for a trait. Is a gene that has only
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a modest effect on a trait, but affects no other traits more or less relevant than a gene that has
massive effects across a whole suite of unrelated traits?

Which prioritization is more useful will likely depend on the downstream context. For exam-
ple, trait-specific genes may be better drug targets due to reduced side effects, perhaps explain-
ing why LoF burden evidence is more predictive of drug trial success than GWAS evidence [58].
Yet, if pleiotropic genes can be targeted in a context-specific way, perhaps prioritizing genes by
trait importance may identify the most impactful therapeutic targets. Additionally, the effects of
pleiotropic genes in knockout experimental systems may differ fundamentally from the pheno-
typic consequences of regulatory variants identified in GWAS.

The fact that LoF burden tests and GWAS prioritize different genes is a blessing — both are
useful and both reveal different aspects of trait biology. However, it is important to understand
what genes they prioritize and why. Our results make clear that both association study designs
will be important in future efforts to map the genetic underpinnings of complex traits.
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Methods

GWAS summary statistics

GWAS summary statistics for 305 continuous traits were downloaded from the Neale Lab (http:
//www.nealelab.is/uk-biobank/, version 3). These regressions were run on inverse rank Normal
transformed phenotypes in a subset of the UKB consisting of approximately 360,000 individuals
and included age, age2, inferred_sex, age × inferred_sex, age2 × inferred_sex, and principal
components 1-20 as covariates. We used 5 × 10−8 as the threshold for genome-wide significance
unless otherwise stated.

LoF Burden test summary statistics

Summary statistics for 292 LoF burden tests were downloaded from Backman et al. [16]. 209 traits
overlapped with traits for which we had GWAS summary data (Supplementary Table 1). Burden
genotypes were calculated for each individual by assigning a homozygous reference genotype to
individuals homozygous for the reference allele for all considered LoF variants and assigning a
heterozygous genotype to all other individuals. Burden tests were run using REGENIE [59], on
inverse rank Normal transformed phenotypes. For all analyses, we used the result of the bur-
den test with mask M1, which only includes variants that are predicted as being LoFs using the
most stringent filtering criteria and an allele frequency upper bound of 1%. We used a per-trait
genome-wide significance threshold of 2.7 × 10−6, derived by applying a Bonferroni correction to
a significance threshold of 0.05 for testing approximately 18,000 genes per trait.

A subset of genetically uncorrelated traits

The set of 209 quantitative traits included some that were highly correlated, such as sitting height
and standing height. For certain analyses, we selected a subset of 27 traits that were not highly
correlated by intersecting the 209 traits with those analyzed by Mostafavi et al. [47] (Supplemen-
tary Table 1). Briefly, the trait list was pruned to ensure that all pairwise genetic correlations, as
reported by the Neale lab, were below 0.5, prioritizing traits with higher heritability. Biomark-
ers were excluded from this subset because their genetic correlations with other traits were not
provided by the Neale lab.

Defining GWAS loci

For a systematic comparison of discoveries between GWAS and burden tests (shown in Figures 1C
and 1D), we grouped GWAS variants into large, non-overlapping genomic loci. This approach
avoids multiple counting of the same GWAS genes, as nearby hits within a locus may map to the
same gene, and it provides a conservative estimate of the overlap between GWAS and burden test
results as described below.

We focused on 151 quantitative traits with at least one burden test hit and one GWAS hit.
For each trait, we analyzed the set of LD-clumped hits (p < 5 × 10−8, clumping r2 < 0.1) from
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8,136,100 filtered SNPs provided by Mostafavi et al. [47].

For each trait, we began the grouping procedure with the most significant hit and iteratively
processed all hits until they were assigned to a locus. For each hit, we included all independent
hits with larger p-values (lower significance) within 1Mb to form a locus. The locus size was then
expanded to ensure that no other hit was within 1Mb of any variant already included in the locus.
After completing one locus, we moved on to the next most significant hit that had not yet been
assigned to any locus. Finally, we assigned overlapping genes to each locus, focusing on the 18,524
protein-coding genes analyzed in the LoF burden test.

In Figure 1D, we plot the p-value of the most significant GWAS variant within each locus on
the x-axis and the p-value of the most significant gene within the same locus from the burden test
on the y-axis.

In Figure 1C, we include only the top GWAS loci to match the statistical power of the burden
test for gene discovery. We illustrate our procedure with the example of standing height. The
LoF burden test for standing height identified 82 significant genes (p < 2.7 × 10−6, to account for
the 18,524 genes tested). The GWAS analysis identified 3,374 nearly independent hits. Following
the grouping procedure outlined above, these hits were consolidated into 382 loci (median size
3.2 Mb). We ranked these loci by the minimum p-value within each locus. Starting with the top-
ranked locus, we iteratively added GWAS loci until we selected 82 genes. From each locus, we
selected all genes that were significant in the LoF burden test. If no such genes existed, we selected
the gene with the smallest burden test p-value.

This procedure ensures that our analysis of the overlap between burden test and GWAS dis-
coveries is conservative. The overestimation arises first from prioritizing genes based on burden
test p-values and second from using large GWAS loci, which may contain more than one causal
gene, thereby increasing the likelihood of overlap with burden test results

Comparing GWAS and LoF burden tests at the LD block level

To avoid exacerbating dissimilarities between LoF burden tests and GWAS caused by mislocal-
ization of GWAS signals, we also performed analyses at the LD block level. We downloaded bed
files containing the coordinates of approximately independent LD blocks from [60]. For each trait
we computed the minimum GWAS p-value of variants within each block and compared that to
the minimum LoF burden test p-value for all genes that overlapped any part of that block. In a
small number of cases, the smallest LoF burden test p-value in two adjacent blocks would be the
same because a single highly significant gene overlapped both blocks. This generally reduced the
correlation between the minimum p-values of GWAS and LoF burden tests, and so we dropped
all such blocks to be conservative.

Association study model

We combined population genetics and statistical genetics models to understand how natural selec-
tion affects variants based on their trait specificity and trait importance. Our model assumes that
traits are under stabilizing selection based on prevailing hypotheses [34,36,37], and uses standard
population genetics theory [38, 61–64]. The details of our model are outlined in the Appendices.

18



Unbiased estimates of trait importance

In several analyses we require estimates of trait importance, either α2 from GWAS or γ2 from LoF
burden tests. The details in both cases are identical, so here we describe γ2. The naïve estimator
of squaring the LoF burden test estimated effect size, (γ̂)2 is biased. Worse, this bias is anti-
correlated with the frequency of the variant, which results in spurious correlations between the
biased estimates and various gene properties such as shet.

To derive an unbiased estimator, we appeal to standard statistical genetics theory [65] to as-
sume that LoF burden estimates are approximately Normally distributed about their true values
with noise dependent on their standard errors. In particular, for a gene with standard error s and
effect size estimate γ̂, we have that γ̂ ∼ N (γ, s2) approximately. This approximation is widely-
used for for GWAS and was recently confirmed to be accurate for LoF burden tests [48]. It is then
a routine calculation to check that (γ̂)2 − s2 is an unbiased estimator of γ2.

LoF burden summary statistics as a function of shet

When comparing LoF burden summary statistics (standard errors, z2, and unbiased estimates of
γ2, ) to shet, we used shet values inferred in [33] and downloaded from [66]. We binned genes by
shet into 100 bins, each with approximately 184 genes. Within each bin we averaged the respective
summary statistics (e.g., unbiased estimate of γ2) across traits and genes. To make sure that our
results were not driven by redundant traits, we used our 27 genetically uncorrelated traits for
these analyses. For heritability enrichment (Figure 6B), we used the fact that heritability should
be proportional to z2 − 1 (Appendix A). Within each bin of genes we then computed the average
z2 − 1 in that bin relative to the average of z2 − 1 across all genes for each trait. This produced a
trait-level enrichment for each bin, and by using the empirical standard deviation of the relative
z2 − 1 within the bin, we could also obtain an empirical standard error for the enrichment. We
then obtained an overall enrichment for each bin, by taking an inverse-variance weighted average
across traits. After this averaging, the mean heritability enrichment across genes need not be one.
As such, we renormalized the estimates to average to one.

ATAC peak specificity

We downloaded all ATAC-seq files from ChIP-Atlas [40] that contained more than 5,000,000 mapped
reads and identified at least 5,000 peaks. Across all files, overlapping peaks were combined us-
ing bedtools merge [67]. This yielded a total of 2,131,526 peaks. Samples other than blood sam-
ples were grouped into 17 tissues based on their annotations in ChIP-Atlas. Namely, Adipocyte
(146 samples), Bone (190 samples), Breast (815 samples), Cardiovascular (559 samples), Digestive
(417 samples), Epidermis (661 samples), Gonad (138 samples), Kidney (375 samples), Liver (191
samples), Lung (1679 samples), Muscle (118 samples), Neural (1349 samples), Pancreas (322 sam-
ples), Placenta (48 samples), Pluripotent (1895 samples), Prostate (312 samples), and Uterus (255
samples). Additionally, samples with any of the following annotations were categorized as Tcell
(1356 samples): CD4-Positive T-Lymphocytes, CD4+ T cells, CD8-Positive T-Lymphocytes, CD8+
T cells, Fetal naive T cells, Gamma-delta T cell, Naive T cells, T cells, CAR-T cells, Tfh, Th0 cells,
Th17 Cells, Th1 Cells, Th2 Cells, Th9 Cells, or T-Lymphocytes. Samples with any of the following
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annotations were categorized as Erythroid (102 samples): Erythroid progenitors, Erythroid Cells,
or Erythroblasts. Ultimately this resulted in 19 tissues or cell type categories.

A peak was considered to be present in a tissue if more than 5 percent of samples contained
the peak. In downstream analyses we used both “number of shared tissues” and “peak intensity”.
We calculated the number of shared tissues by considering all peaks in the relevant tissue for a
given trait (e.g., Bone for Height) and then counting the number of tissues in which that peak was
present. In particular, we only consider peaks that are present in the relevant tissue. We calculated
“peak intensity” as the fraction of samples within the focal tissue that contain the peak.

Gene expression specificity

We compiled estimates of gene expression in 17 tissue/cell types, which were intended to over-
lap with the categorization of ATAC-seq peaks when possible. All tissues that were ultimately
matched to traits (see below) were included in both our ATAC-seq tissues and our expression tis-
sues, but there are some differences between the remaining tissues. Average gene expression TPM
of the following tissues were downloaded and extracted from the Human Protein Atlas [41] tis-
sue gene data (rna_tissue_hpa.tsv.zip): adipose tissue, breast, heart muscle, colon, skin, ovary,
kidney, liver, lung, skeletal muscle, amygdala, pancreas, placenta, and prostate. Average gene
expression TPM of the following cell types were downloaded and extracted from the Human
Protein Atlas single cell type data (rna_single_cell_type.tsv.zip): Erythroid cells and T cells.
Average gene expression TPM of human bone samples was downloaded from GEO [68] accession
GSE106292 [69, 70].

In each tissue, genes with more than 10 TPM were considered to be “expressed”. We then
restricted our analyses to genes expressed in the trait-relevant tissue. We computed an expression
specificity score by taking the expression level in TPM in the trait-relevant tissue divided by the
sum of expression levels across all 17 tissues. This provided an expression specificity score for
every gene expressed in the trait-relevant cell type. For analyses involving expression specificity
bins, we took all of these expression specificity scores across all 9 trait-tissue pairs, computed
quintiles, and then assigned each gene for a given trait-tissue pair to its quintile.

Linking traits to tissues

To identify which tissue (or cell type) is predominantly associated with a given trait, we ran S-
LDSC [6, 42] to partition the heritability of all of our traits that had estimated heritability > 0.04.
We used annotations for 19 tissues and cell types constructed from our ATAC-seq analysis de-
scribed above, along with the LDSC baseline v1.1 covariates. Our aim was to identify trait-tissue
pairs where heritability could clearly be explained by one tissue as opposed to multiple tissues.
As such, we only retained traits that had a tissue with an LDSC τ with a z-score > 4.5 and had
>40% of their heritability explained by variants in ATAC-seq peaks of the corresponding tissue. If
more than one trait was assigned to the same tissue, we only kept genetically uncorrelated traits
(r2 < 0.04). This resulted in 9 trait-tissue pairs (Supplementary Table 1): Mean corpuscular volume
(30040_irnt) → Erythroid, Reticulocyte percentage (30240_irnt) → Erythroid, Eosinophil percent-
age (30210_irnt) → T cell, Lymphocyte count (30120_irnt) → T cell, Standing height (50_irnt) →
Bone, Heel bone mineral density (3148_irnt) → Bone, Glucose (30740_irnt) → Pancreas, Creatinine
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(30700_irnt) → Liver, and Alanine aminotransferase (30620_irnt) → Liver.

Estimating the effect of gene expression specificity on LoF burden prioritization

For each of the 9 trait-tissue pairs described above, we performed a linear regression of the burden
z2 for all genes expressed in the top tissue on the genes’ expression specificity, binned into quintiles
as described earlier. We included the unbiased estimates of the genes’ trait importance (defined
above) as a covariate. For each specificity bin, we calculated an inverse-variance weighted average
of the regression coefficients across all 9 traits, with standard errors computed as the square root
of the reciprocal of the total weight. The results, shown in Supplementary Figure S9, demonstrate
that the burden test prioritization of specifically expressed genes in Figure 3E is not driven by
differences in the importance of genes across specificity bins.

S-LDSC analysis using tissue-specific ATAC-seq peaks

For each trait-tissue pair, we ran S-LDSC [6, 42] to estimate the heritability enrichment of tissue-
specific ATAC-seq peaks. To this end, we categorized ATAC-seq peaks present in each tissue into
5 bins based on their presence in other tissues: present in 1-2 tissues, present in 3-8 tissues, present
in 9-15 tissues, present in 16-18 tissues, and present in all 19 tissues. Also, we categorized ATAC-
seq peaks present in each tissue into 5 bins based on their intensity. The size of these bins were
set to match the sizes of the tissue-specificity-based bins. We included the annotations based on
ATAC peak tissue specificity and peak intensity bins with the LDSC baseline v1.1 model and used
S-LDSC v.1.0.1 on HapMap3 SNPs [71].

S-LDSC analysis using coding variants

We downloaded the variant annotation file (variants.tsv.bgz) from the Neale lab website ((http:
//www.nealelab.is/uk-biobank/). We used the consequence information in the file, which corre-
sponds to Ensembl Variant Effect Predictor (VEP) version 85 [72], for annotating variants. Specifi-
cally, we classified variants as being coding if their most severe consequence was any of:

• splice_donor_5th_base_variant

• missense_variant

• splice_region_variant

• splice_acceptor_variant

• splice_donor_variant

• splice_donor_region_variant

• stop_gained

• start_lost
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• stop_lost

• frameshift_variant

• inframe_insertion

• protein_altering_variant

For each trait–tissue pair, we ran S-LDSC [6, 42] to estimate the heritability enrichment of cod-
ing variants as a function of expression-specificity. We included expression specificity bin (as
defined above) as an annotation in the S-LDSC model. We also categorized genes into 5 equally
sized bins based on their expression level in the tissue of interest, and all the coding variants were
categorized into one of these 5 bins based on the expression level of the corresponding genes.
These annotations were also included in the S-LDSC model. In addition, we used the covariates
in the baseline v1.1 model and restricted our analysis to HapMap3 SNPs [71]. All analyses were
run with S-LDSC v.1.0.1.

LoF burden summary statistics as a function of µL

Analyses comparing LoF burden summary statistics to µL were performed analogously to the
analyses comparing the summary statistics to shet. As a proxy for µL, we downloaded the ex-
pected number of segregating LoFs for each gene as calculated in gnomAD v2 [43] from [66]. To
show that µL is essentially driven by CDS length, we downloaded CDS lengths for MANE se-
lect canonical transcripts (genome build GRCh38) from ensmbl [73] and correlated them with the
expected number of segregating LoFs from gnomAD [43] (Supplementary Figure S12).

Computing variant frequency distributions as a function of shet

To simulate under our model, we required the distribution of allele frequencies for a given selec-
tion coefficient. We assumed a stabilizing selection model which is approximately equivalent to
homozygotes having a relative fitness of 1 and heterozygotes having a fitness of 1− shet [38,61–63].
We used fastDTWF [74] to compute likelihoods under this model. We assumed an equilibrium
population of 20,000 diploids, and computed allele frequency distributions along a grid of 50
shet values from 10−7 to 0.05 evenly spaced on the log scale. We used 1.25 × 10−8 as the per-
generation mutation rate. We considered a model where the ancestral allele is known by using
fastDTWF’s no_fix=True option. Additionally, fastDTWF has two parameters that control the ac-
curacy of its approximation. Based on the recommendations of [74], we set dtwf_tv_sd to 0.1 and
dtwf_row_eps to 10−8.

Simulating realized heritability

To generate Figure 5B, we simulated 50,000 unlinked variants from our stabilizing selection model.
We considered 1, 000 values of shet log-uniformly spaced between 10−7 and 2.3 × 10−4. For each
value of shet, we then simulated 50 variants by drawing 50 allele frequencies from the allele fre-
quency distributions we computed as described above. To model the slight differences between
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population and GWAS sample allele frequencies, we then drew a GWAS sample allele count for
each variant as Binomial(600,000, f ) random variable, where f was the population frequency, and
600,000 was chosen to match the roughly 300,000 diploids in the UKB. These allele counts were
then normalized to obtain GWAS sample allele frequencies, f̃ . For this simulation, we assumed
that all variants have the same trait specificity. This makes α2 on the focal trait proportional to shet,
so we set the realized heritability to 2shet f̃ (1 − f̃ ), and normalized all results relative to the maxi-
mum simulated realized heritability. Likewise, effect sizes were reported relative to the maximum
simulated effect size.

Computing pleiotropy of GWAS hits

To investigate the pleiotropy of top versus weak GWAS hits, we considered all of the 27 uncor-
related traits that had at least 100 GWAS hits, leaving 18 traits. For each trait, we grouped the
hits into four quartiles based on variant p-values, with quartile 1 containing the most statistically
significant hits and quartile 4 the least. For each hit, we calculated the number of traits (out of 18)
in which the variant was a hit and computed the mean values within each quartile.

Simulating pleiotropy of GWAS hits

To simulate the effects of genetic drift on the apparent pleiotropy of GWAS hits, we simulated
GWAS summary statistics. To match the real data described above, we considered 18 traits, and
simulated effect sizes for 10 million not necessarily segregating positions. We simulated the effect
sizes independently for each position, and drew the vector of squared effect sizes for variant j,
α⃗2

j ∈ R18 as

α⃗2
j ∼

10−7

f
× exp

{
3 f ×N

(
0, pI + (1 − p)11T

)}
where the exponentiation is performed element-wise and f and p are parameters that affect the
range of different total effect sizes, ∥α⃗2

j∥1, and distribution of trait specificities.

We then assumed that the strength of selection against the variant was ∥α⃗2
j∥1. We obtained the

minor allele frequency for each variant by drawing from the variant frequency distribution with
the closest shet, computed as described above.

Finally, we simulated a GWAS by assuming that the observed association statistic for each
trait was independently Normally distributed about its true value. For example, for trait k and the
variant at position j we have:

α̂jk ∼ N

√α⃗2
jk,

1√
2Neff × MAFj(1 − MAFj))

 ,

where Neff is a scaling factor that captures both the the amount of environmental noise conributing
to the trait as well as the sample size. We converted these to p-values by taking 2NeffMAFj(1 −
MAFj))α̂

2
jk as a squared z-score, which is chi-squared distributed with one degree of freedom

under the null. We considered a variant to be a genome-wide significant hit if its p-value was
smaller than a parameter, t.
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This simulation approach has four free parameters. In the main text we use f = 0.33, p = 0.5,
Neff = 10000000 and t = 10−5. While these parameters are related to standard GWAS parameters
(e.g., the GWAS sample size or genome-wide significance threshold), the exact quantitative rela-
tionship should not be over-analyzed. For example, we assume that the strength of selection is
exactly ∥α⃗2

j∥1. If instead there was some scaling factor, that could be absorbed into Neff. Similarly,
there is a qualitative inverse relationship between the effects of t and Neff (e.g., lower t has a simi-
lar effect to increasing Neff), making the exact setting of either parameter somewhat arbitrary. We
chose the values we used here to roughly match the distribution of selection coefficients inferred
from real GWAS data [75], as well as the observed patterns of MAF and pleiotropy in the UKB
GWAS results. In Supplementary Figures S14, S15, S16, and S17, we vary each of Neff, t, p, and f
respectively while holding the others fixed to show that our qualitative results are not sensitive to
the particular simulation parameters we chose.

AMM analysis

We ran AMM [49] to estimate heritability enrichments for gene sets, following the workflow de-
scribed at (https://github.com/danjweiner/AMM21 commit 524c620). We binned genes into 100
approximately equally sized bins based on shet as described above and used these bins as our
gene sets. AMM requires an estimate of the probability that a SNP is acting via the closest gene,
second closest gene, etc. For more distant genes, there is insufficient power to estimate these prob-
abilities so AMM recommends combining these into bins. We follow the recommended binning,
and then use the probabilities estimated in the original AMM paper [49, Supplementary Table 5].
AMM recommends using LDSC baseline covariates in all models, for which we used v2.3. We
restricted our analysis to HapMap3 variants. The results in Figure 6D are the inverse-variance
weighted average of the heritability enrichment estimates across our 27 genetically uncorrelated
traits. These inverse-variance weighted estimates of the average enrichments do not necessarily
need to average to one in contrast to the true enrichments. As such, we renormalized the estimated
enrichments so that they sum to one.

Probability of a variant being a GWAS hit for a gene correlates with shet

We analyzed the GWAS hits curated in our previous study [47], filtered to a set of 6,971,256 SNPs
that passed quality control procedures. Importantly, this set excluded lead GWAS SNPs in LD
(r2 > 0.8) with variants predicted to have protein-altering consequences, to condition on puta-
tively non-coding trait associations. We focused on 15,591 approximately independent GWAS hits
associated with our 27 uncorrelated traits, for which estimates of shet for the nearest gene were
available. We performed logistic regression to differentiate GWAS hits from 100,000 SNPs ran-
domly sampled from the same 6,971,256 SNP set. The shet values of the nearest genes were used as
the predictor, categorized into 100 percentile bins. As in our previous work, the regression model
included additional covariates: minor allele frequency (MAF), LD score, gene density, and the ab-
solute distance to the nearest transcription start site (TSS). We also incorporated dummy variables
representing 20 quantiles of each of these covariates (MAF, LD score, gene density, and distance to
TSS). Results of this analysis are presented in Supplementary Figure S18. The covariate data were
obtained from Mostafavi et al. [47].

24

https://github.com/danjweiner/AMM21


The number of GWAS hits near a gene correlates with trait importance

To avoid double counting GWAS hits due to LD, we restricted our analysis to approximately
independent hits. For each trait, we analyzed the set of LD-clumped hits (p < 5 × 10−8, clumping
r2 < 0.1) from 8,136,100 filtered SNPs provided in [47]. We then assigned each GWAS hit to the
closest gene (using the midpoint of genes as released with AMM [49]). For each trait, we then
correlated the number of GWAS hits assigned to each gene with our unbiased estimate of that
gene’s trait importance, γ̂2, based on the LoF burden test results. To make certain that our results
were not driven by differences between genes with no GWAS signal versus genes with any GWAS
signal, we also computed correlations between number of GWAS hits assigned to each gene and
γ̂2 restricting to genes with at least one GWAS hit.
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Supplementary Table

Supplementary Table 1: List of traits and abbreviations used in the study. Table of the 209 traits
used in this study with the UKB trait IDs, trait names, abbreviations used, tissue to which each trait was linked (if
applicable), and an indication of whether or not the trait was included in our subset of 27 genetically uncorrelated
traits (Methods).
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20023_irnt: Mean time to correctly identify matches
20154_irnt: Forced expiratory volume in 1−second (FEV1), predicted percentage

2966_irnt: Age high blood pressure diagnosed
30510_irnt: Creatinine (enzymatic) in urine

400_irnt: Time to complete round
404_irnt: Duration to first press of snap−button in each round

4079_irnt: Diastolic blood pressure, automated reading
4120_irnt: Heel broadband ultrasound attenuation (right)

4194_irnt: Pulse rate
5084_irnt: Spherical power (right)

5085_irnt: Spherical power (left)
5201_irnt: logMAR, final (right)

5254_irnt: Intra−ocular pressure, corneal−compensated (right)
5262_irnt: Intra−ocular pressure, corneal−compensated (left)

1488_irnt: Tea intake
20022_irnt: Birth weight

3064_irnt: Peak expiratory flow (PEF)
30850_irnt: Testosterone (quantile)

3761_irnt: Age hay fever, rhinitis or eczema diagnosed
5255_irnt: Intra−ocular pressure, Goldmann−correlated (right)

5264_irnt: Corneal hysteresis (left)
5265_irnt: Corneal resistance factor (left)

189_irnt: Townsend deprivation index at recruitment
23111_irnt: Leg fat percentage (right)

3144_irnt: Heel Broadband ultrasound attenuation, direct entry
4080_irnt: Systolic blood pressure, automated reading

4101_irnt: Heel broadband ultrasound attenuation (left)
4124_irnt: Heel bone mineral density (BMD) (right)

5256_irnt: Corneal hysteresis (right)
5263_irnt: Intra−ocular pressure, Goldmann−correlated (left)

102_irnt: Pulse rate, automated reading
23115_irnt: Leg fat percentage (left)

23119_irnt: Arm fat percentage (right)
30500_irnt: Microalbumin in urine

30740_irnt: Glucose (quantile)
4100_irnt: Ankle spacing width (left)

4105_irnt: Heel bone mineral density (BMD) (left)
4123_irnt: Heel quantitative ultrasound index (QUI), direct entry (right)

4125_irnt: Heel bone mineral density (BMD) T−score, automated (right)
5097_irnt: 6mm weak meridian (left)

5134_irnt: 6mm strong meridian (left)
5257_irnt: Corneal resistance factor (right)

23099_irnt: Body fat percentage
23123_irnt: Arm fat percentage (left)

30220_irnt: Basophill percentage
30790_irnt: Lipoprotein A (quantile)

3147_irnt: Heel quantitative ultrasound index (QUI), direct entry
3148_irnt: Heel bone mineral density (BMD)

4104_irnt: Heel quantitative ultrasound index (QUI), direct entry (left)
4106_irnt: Heel bone mineral density (BMD) T−score, automated (left)

4119_irnt: Ankle spacing width (right)
49_irnt: Hip circumference

5098_irnt: 6mm weak meridian (right)
5133_irnt: 6mm strong meridian (right)

78_irnt: Heel bone mineral density (BMD) T−score, automated
21001_irnt: Body mass index (BMI)

23100_irnt: Whole body fat mass
23104_irnt: Body mass index (BMI)

23112_irnt: Leg fat mass (right)
23116_irnt: Leg fat mass (left)

23120_irnt: Arm fat mass (right)
23124_irnt: Arm fat mass (left)

23127_irnt: Trunk fat percentage
23128_irnt: Trunk fat mass

3581_irnt: Age at menopause (last menstrual period)
5135_irnt: 3mm strong meridian (left)

30670_irnt: Urea (quantile)
30810_irnt: Phosphate (quantile)
30890_irnt: Vitamin D (quantile)

5096_irnt: 3mm weak meridian (left)
5099_irnt: 3mm weak meridian (right)

20153_irnt: Forced expiratory volume in 1−second (FEV1), predicted
30190_irnt: Monocyte percentage

30620_irnt: Alanine aminotransferase (quantile)
30650_irnt: Aspartate aminotransferase (quantile)

30680_irnt: Calcium (quantile)
46_irnt: Hand grip strength (left)

47_irnt: Hand grip strength (right)
48_irnt: Waist circumference

5132_irnt: 3mm strong meridian (right)
20150_irnt: Forced expiratory volume in 1−second (FEV1), Best measure

30060_irnt: Mean corpuscular haemoglobin concentration
30130_irnt: Monocyte count

30710_irnt: C−reactive protein (quantile)
3143_irnt: Ankle spacing width

23098_irnt: Weight
23108_irnt: Impedance of leg (left)

30600_irnt: Albumin (quantile)
20151_irnt: Forced vital capacity (FVC), Best measure

21002_irnt: Weight
30210_irnt: Eosinophill percentage

30280_irnt: Immature reticulocyte fraction
23107_irnt: Impedance of leg (right)

30140_irnt: Neutrophill count
30200_irnt: Neutrophill percentage

3062_irnt: Forced vital capacity (FVC)
3063_irnt: Forced expiratory volume in 1−second (FEV1)

30780_irnt: LDL direct (quantile)
30860_irnt: Total protein (quantile)

23110_irnt: Impedance of arm (left)
30020_irnt: Haemoglobin concentration

30000_irnt: White blood cell (leukocyte) count
30690_irnt: Cholesterol (quantile)

30730_irnt: Gamma glutamyltransferase (quantile)
30870_irnt: Triglycerides (quantile)

23106_irnt: Impedance of whole body
30030_irnt: Haematocrit percentage
30180_irnt: Lymphocyte percentage
30660_irnt: Direct bilirubin (quantile)

30830_irnt: SHBG (quantile)
23117_irnt: Leg fat−free mass (left)

30290_irnt: High light scatter reticulocyte percentage
30300_irnt: High light scatter reticulocyte count

30610_irnt: Alkaline phosphatase (quantile)
30640_irnt: Apoliprotein B (quantile)

30700_irnt: Creatinine (quantile)
30770_irnt: IGF−1 (quantile)

30840_irnt: Total bilirubin (quantile)
30880_irnt: Urate (quantile)

23113_irnt: Leg fat−free mass (right)
23114_irnt: Leg predicted mass (right)

23118_irnt: Leg predicted mass (left)
23109_irnt: Impedance of arm (right)

30120_irnt: Lymphocyte count
23121_irnt: Arm fat−free mass (right)
30630_irnt: Apoliprotein A (quantile)

30720_irnt: Cystatin C (quantile)
30750_irnt: Glycated haemoglobin (quantile)

23105_irnt: Basal metabolic rate
23122_irnt: Arm predicted mass (right)

23125_irnt: Arm fat−free mass (left)
23126_irnt: Arm predicted mass (left)
30240_irnt: Reticulocyte percentage

30250_irnt: Reticulocyte count
23102_irnt: Whole body water mass

23130_irnt: Trunk predicted mass
30090_irnt: Platelet crit

30760_irnt: HDL cholesterol (quantile)
23101_irnt: Whole body fat−free mass

23129_irnt: Trunk fat−free mass
30110_irnt: Platelet distribution width

30080_irnt: Platelet count
30010_irnt: Red blood cell (erythrocyte) count

30070_irnt: Red blood cell (erythrocyte) distribution width
20015_irnt: Sitting height

30270_irnt: Mean sphered cell volume
30040_irnt: Mean corpuscular volume

30100_irnt: Mean platelet (thrombocyte) volume
30260_irnt: Mean reticulocyte volume

30050_irnt: Mean corpuscular haemoglobin
50_irnt: Standing height
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Figure S1: Limited GWAS overlap at top LoF burden hits.
Extended version of Figure 1C, including all traits with at least one genome-wide significant LoF burden test. Dark
blue bars correspond to genome-wide significant LoF burden test genes that also overlap a top GWAS locus (Methods).
Light blue bars are genome-wide significant LoF burden test genes that do not overlap a top GWAS locus.
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Figure S2: Strongest GWAS hits are not always strong LoF burden hits.
Extended version of Figure 1D, including 9 additional traits. Each point is a significant GWAS locus (Methods).
Dashed red lines are thresholds for genome-wide significance.
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Figure S3: Modest correlation between GWAS and LoF burden test p-value ranks.
Histogram of Spearman’s ρ between the minimum GWAS − log10 p-value of any variant within a given GWAS
locus and the minimum LoF burden − log10 p-value of any gene overlapping that locus. By definition all GWAS loci
contain at least one genome-wide significant variant (Methods).
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5262_irnt: Intra−ocular pressure, corneal−compensated (left)
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3064_irnt: Peak expiratory flow (PEF)
30850_irnt: Testosterone (quantile)
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5255_irnt: Intra−ocular pressure, Goldmann−correlated (right)

5264_irnt: Corneal hysteresis (left)
5265_irnt: Corneal resistance factor (left)

189_irnt: Townsend deprivation index at recruitment
23111_irnt: Leg fat percentage (right)

3144_irnt: Heel Broadband ultrasound attenuation, direct entry
4080_irnt: Systolic blood pressure, automated reading

4101_irnt: Heel broadband ultrasound attenuation (left)
4124_irnt: Heel bone mineral density (BMD) (right)

5256_irnt: Corneal hysteresis (right)
5263_irnt: Intra−ocular pressure, Goldmann−correlated (left)

102_irnt: Pulse rate, automated reading
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23119_irnt: Arm fat percentage (right)
30500_irnt: Microalbumin in urine

30740_irnt: Glucose (quantile)
4100_irnt: Ankle spacing width (left)

4105_irnt: Heel bone mineral density (BMD) (left)
4123_irnt: Heel quantitative ultrasound index (QUI), direct entry (right)

4125_irnt: Heel bone mineral density (BMD) T−score, automated (right)
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5134_irnt: 6mm strong meridian (left)
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23099_irnt: Body fat percentage
23123_irnt: Arm fat percentage (left)

30220_irnt: Basophill percentage
30790_irnt: Lipoprotein A (quantile)

3147_irnt: Heel quantitative ultrasound index (QUI), direct entry
3148_irnt: Heel bone mineral density (BMD)

4104_irnt: Heel quantitative ultrasound index (QUI), direct entry (left)
4106_irnt: Heel bone mineral density (BMD) T−score, automated (left)
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5133_irnt: 6mm strong meridian (right)

78_irnt: Heel bone mineral density (BMD) T−score, automated
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30600_irnt: Albumin (quantile)
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30210_irnt: Eosinophill percentage

30280_irnt: Immature reticulocyte fraction
23107_irnt: Impedance of leg (right)
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Figure S4: Limited GWAS overlap at top LoF burden LD blocks.
Alternate version of Supplementary Figure S1 but using LD blocks instead of GWAS loci. Dark blue bars correspond
to LD blocks that contain a genome-wide significant LoF burden test gene that are also top LD blocks for GWAS. Light
blue bars are LD blocks containing genome-wide significant LoF burden test genes that are not also top GWAS LD
blocks.
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Figure S5: GWAS and LoF burden tests prioritize different LD blocks for height.
Alternate version of Figure 1D but using LD blocks instead of GWAS loci. Each point is an LD block. Dashed red
lines are thresholds for genome-wide significance.
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Figure S6: GWAS and LoF burden tests prioritize different LD blocks across traits.
Alternate version of Supplementary Figure S2 but using LD blocks instead of GWAS loci. Each point is an LD block.
Dashed red lines are thresholds for genome-wide significance.
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Figure S7: Modest correlation between GWAS and LoF burden test p-value ranks across LD
blocks.
Alternate version of Supplementary Figure S3 but using LD blocks instead of GWAS loci. Histogram of Spearman’s
ρ between the minimum GWAS − log10 p-value and the minimum LoF burden − log10 p-value across LD blocks.
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Figure S8: pLoF and shet are negatively correlated.
Alternate version of Figure 3B but binning genes by the prior mean shet as reported by [33]. These estimates are
learned using GeneBayes [33], which uses frequency data across genes to learn a function mapping gene features (e.g.,
expression patterns across tissues) to a prior on shet. In the main text, we used GeneBayes posterior mean estimates,
which use this learned prior for each gene along with that gene’s pLoF to estimate shet. Here we use the prior mean,
which uses the pLoF data across genes to learn per-gene priors, but does not use a gene’s pLoF when estimating its shet.
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Figure S9: Expression specificity increases LoF burden test z-scores.
For 9 trait-tissue pairs we regressed LoF burden test z2 for each gene on either A) expression specificity bin or B)
expression specificty bin and an unbiased estimate of γ2, γ̂2. Since the 5 bins are co-linear, we report all regression
coefficients relative to the effect in expression specificity bin 1. Colored lines are regression coefficients for individual
trait-tissue pairs. The black line is the inverse variance-weighted average across trait-tissue pairs. The y-axes have
been non-linearly transformed.
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Figure S10: Expression levels do not play a large role in GWAS coding heritability.
S-LDSC analysis results for 9 trait-tissue pairs. Result are reported in terms of τ, a measure of heritability enrichment.
Variants are binned by the expression level (as measured by TPM) of the corresponding gene. Since the 5 bins are
co-linear, we drop the bin 1 annotation and only report results for the remaining bins. These results are from a joint
analysis including both expression specificity and expression level bins as covariates. Colored lines are τ estimates
for individual trait-tissue pairs. The black line is the inverse variance-weighted average across trait-tissue pairs. The
y-axis has been non-linearly transformed.
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Figure S11: ATAC peak intensity increases heritability explained.
S-LDSC analysis results for 9 trait-tissue pairs. Result are reported in terms of τ, a measure of heritability enrichment.
Variants are binned by the intensity of their ATAC-seq peaks (Methods). Since the 5 bins are co-linear, we drop the
bin 1 annotation and only report results for the remaining bins. These results are from a joint analysis including both
ATAC specificity and ATAC intensity bins as covariates. Colored lines are the τ estimates for individual trait-tissue
pairs. The black line is the inverse variance-weighted average across trait-tissue pairs. Note that the y-axis has been
non-linearly transformed.

43



R2 = 0.84

0

500

1000

0 30000 60000 90000
CDS length in base pairs

Ex
pe

ct
ed

 L
oF

s

Figure S12: CDS length and expected number of unique LoFs are highly correlated.
Scatter plot of the expected length in base pairs for the canonical CDS for each gene (Methods) and the expected
number of unique LoFs as computed by gnomAD [43]. The overall correlation is high (Pearson’s r2 = 0.84).

44



0.00

0.02

0.04

0.06

0.08

0 250 500 750 Present Day
Generations since mutation arose

Fr
eq

ue
nc

y

Trajectories of 
identical mutations

Figure S13: Genetic drift generates variance in allele frequencies.
10,000 frequency trajectories of identical mutations simulated under the Discrete-Time Wright-Fisher model. Trajecto-
ries were simulated assuming no mutation, an shet of 10−3, no fitness consequences in homozygotes, and a population
size of Ne = 10,000. All mutations were assumed to arise 1,000 generations before present.
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Figure S14: Robustness of apparent pleiotropy to simulation parameter Neff.
Analogous to Figure 5F-H, but with varying Neff (see Methods for definition), while holding all other simulation
parameters fixed to the values used in the main text. Results from individual population genetic simulations are in
orange, and the mean across simulations is in black. The histograms show the distribution of trait specificity, ΨV ,
across segregating sites for a single simulation. Neff does not affect the distribution of effect sizes, and so these are the
same across values of Neff. The value of Neff used in the main text is in red.
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Figure S15: Robustness of apparent pleiotropy to simulation parameter t.
Analogous to Figure 5F-H, but with varying t (see Methods for definition), while holding all other simulation param-
eters fixed to the values used in the main text. Results from individual population genetic simulations are in orange,
and the mean across simulations is in black. The histograms show the distribution of trait specificity, ΨV , across
segregating sites for a single simulation. t does not affect the distribution of effect sizes, and so these are the same
across values of t. The value of t used in the main text is in red.
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Figure S16: Robustness of apparent pleiotropy to simulation parameter p.
Analogous to Figure 5F-H, but with varying p (see Methods for definition), while holding all other simulation param-
eters fixed to the values used in the main text. Results from individual population genetic simulations are in orange,
and the mean across simulations is in black. The histograms show the distribution of trait specificity, ΨV , across
segregating sites for a single simulation. The value of p used in the main text is in red.
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Figure S17: Robustness of apparent pleiotropy to simulation parameter f .
Analogous to Figure 5F-H, but with varying f (see Methods for definition), while holding all other simulation param-
eters fixed to the values used in the main text. Results from individual population genetic simulations are in orange,
and the mean across simulations is in black. The histograms show the distribution of trait specificity, ΨV , across
segregating sites for a single simulation. The value of f used in the main text is in red.
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Figure S18: Probability of a variant being a GWAS hit is correlated with shet.
Logistic regression coefficients for shet percentile categories in a model that predicts whether a variant is a GWAS
hit or not including various covariates such as distance to transcription start site (Methods). Each bin contains
approximately 184 genes. The trend line is fit using LOESS.
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Figure S19: Number of GWAS hits is predictive of γ2.
Scatter plots of the correlation across genes between the number of independent GWAS hits and an unbiased estimate
of γ2, γ̂2, against the total number of independent GWAS hits. A) Correlation across all genes. Traits with more
independent hits tend to have a higher correlation between number of hits and γ̂2. B) To make sure that the correlations
in panel A were not driven just by presence or absence of any GWAS hits, we computed correlations between number
of GWAS hits and γ̂2 for only those genes with at least one GWAS hit. In both panels, it should be noted that γ̂2 is
generally a very noisy estimate of γ2. This will drive the plotted correlations to be much lower than the true correlation
between the number of GWAS hits and the unobserved true values of γ2.
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A A mathematical model of association studies

In this appendix we describe our mathematical model of association studies and clarify the re-
lationship between population, quantitative, and statistical genetics concepts. Our results rely
primarily on the work of [65] and [38].

Main theoretical results

We begin with an additive model of phenotypes:

y⃗ = G⃗α + ε (1)

where y ∈ Rn is the vector of phenotypes of the n individuals included in the study, G ∈ Rn×p is
a matrix containing the centered, but not scaled genotypes of the n individuals at the p causal loci,
α⃗ ∈ Rp is the vector of the effects of the “1” alleles at each causal locus on the phenotype (usually
denoted by β in the literature, but we reserve β for the effect of variants on genes), and ε ∈ Rn

is a random vector representing unobserved noise. This additive model is rather simple, but is
generally well-supported as a good approximation for many complex traits [35] and is a common
assumption across statistical genetics [76–81]. We assume that the causal variants are unlinked in
the population, and that p is large enough such that the amount of heritability contributed by any
single site is ≪ 1. We also assume that the phenotype is measured in units so that its variance
across individuals is 1.

Before proceeding further, we note that there are several distinct sources of randomness in
Equation 1. First, the environmental noise affecting each individual is random, which is made
explicit by ε being a random variable. Second, the choice of which individuals are included in
the GWAS is random: one could imagine sampling a separate cohort from the same population
and obtaining individuals with different genotypes and phenotypes. Third, the genotypes and
phenotypes in the population itself are the result of the fundamentally random process of evolu-
tion. Note that this is distinct from just obtaining another GWAS cohort. Taking two large random
samples from the same population will result in the two cohorts having almost perfectly correlated
allele frequencies, but replaying the tape of evolution would result in alleles having completely
different frequencies. Throughout, we will try to be clear about which sources of randomness we
are averaging over or point out when a particular source of randomness is negligible.

Given our assumptions, it has been shown [65] that conditioned on the GWAS sample, α̂j, the
estimate of the jth marginal effect, αj, is asymptotically Normally distributed:

α̂j ∼ N
(
αj, ∥Gj∥−2

2
)

,

where Gj is the jth column of G (i.e., the vector of genotypes at the jth causal variant). Similarly,
the standard error of α̂j estimated by GWAS is ∥Gj∥−1

2 . Therefore, the z-score, for variant j, zj :=
α̂j/SE(α̂j), reported by GWAS is also asymptotically Normally distributed:

zj ∼ N
(
αj∥Gj∥2, 1

)
.

Equivalently, we can write zj as the sum of a constant and a standard Normal random variable,
say uj:

zj
d
= αj∥Gj∥2 + uj.
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We therefore have that the GWAS test statistic, z2
j (sometimes referred to as the chi-squared statistic

as it is asymptotically chi-squared distributed under a null hypothesis of no effect of the variant
on the trait), is

z2
j

d
= α2

j ∥Gj∥2
2 + 2αj∥Gj∥2uj + u2

j . (2)

Note that uj is determined by the environment randomness in ε. Averaging over the randomness
in ε, which we denote by Eε we obtain that the expected z2

j statistic is

Eεz2
j = α2

j ∥Gj∥2
2 + 1. (3)

Note that the right-hand side of equation 3 depends on the genotypes of the individuals in-
cluded in the GWAS. To relate this to population quantities, we assume that the individuals in-
cluded were sampled randomly from the population (and hence independently from the pheno-
type), and that the population is at Hardy-Weinberg equilibrium. In such a case, the variance
of a randomly sampled genotype with population frequency f j is 2 f j(1 − f j), which can be seen
by considering the genotype as the sum of two randomly chosen haploids, which are each inde-
pendent Bernoulli( f j) random variables. Then, we see that averaging over this sampling process,
which we denote by EG, results in

EGα2
j ∥Gj∥2

2 = α2
j EG∥Gj∥2

2

= α2
j

n

∑
i=1

EGG2
ij

= 2nα2
j f j(1 − f j), (4)

where the first line follows from our assumption that individuals were chosen independently of
the phenotype, and the final follows from the fact that we are considering centered genotypes, so
EGG2

ij = Var(Gij).

Plugging equation 4 into equation 3 we obtain that averaging over environmental randomness
and the individuals included in the GWAS, we obtain

EG,εz2
j = 2nα2

j f j(1 − f j) + 1. (5)

As a result, under our assumptions the average strength of association for the jth variant in GWAS
is determined by 2nα2

j f j(1 − f j).

By a similar argument, as n → ∞,

plim
n→∞

z2
j

n
= 2α2

j f j(1 − f j), (6)

and so an infinitely powered GWAS would prioritize variants exactly by 2α2
j f j(1 − f j). To make

this argument rigorous, note that in equation 2, Gij is bounded so ∥Gj∥2 is O(
√

n) and uj is Op(1),
so only the α2

j ∥Gj∥2
2 is O(n). Then, again because G2

ij is bounded, ∥Gj∥2
2/n converges in probability

to its mean, 2 f j(1 − f j) by the weak law of large numbers.

From the perspective of population genetics, the frequencies appearing equations 5 and 6 are
the result of evolution, which is itself a random process. As such, we might consider how such
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sites typically behave under an evolutionary model. In this section, we assume that selection is
sufficiently strong against new mutations that we are in the mutation-selection balance regime.
See Appendix C for the general case. For the subsequent discussion, we will assume without loss
of generality that the “1” allele at each locus is the minor allele.

In this regime, selection is strong enough that the minor allele will be at a low enough fre-
quency such that f 2

j is essentially negligible, so f j(1 − f j) ≈ f j. Then, E f j = µ/shet, where µ is
the mutation rate, and shet is the strength of selection against heterozygotes [32, equation (3.9)].
Intuitively, alleles enter the population at a rate of 2Nµ, where N is the population size, and are
removed from the population at a rate of shet in the roughly 2N f j heterozygous individuals. At
equilibrium, these forces must cancel, resulting in f j ≈ µ/shet. Plugging this result into equation 5,
we obtain

Ez2
j =

2nα2
j µ

shet
+ 1, (7)

where now the expectation is taken over the environmental randomness, the randomness in the
composition of the GWAS cohort, and the evolutionary process.

Finally, selection must be acting upon a variant due to its effects on some phenotypes. In
Appendix D we show that under a model of stabilizing selection on T traits measured in appro-
priate units, shet ≈ ∑T

t=1 α2
t,j, where αt,j is the effect of the jth variant on the tth fitness-relevant trait.

Substituting this result in equation 7, we obtain our main result

Ez2
j = 2nµ

α2
j

∑T
t=1 α2

t,j

+ 1

= 2nµΨV + 1, (8)

where ΨV is the trait specificity of the variant as defined in the main text.

LoF burden tests

To extend these results to LoF burden tests, the only part that needs modification is our analysis
of ∥Gj∥2

2, which in burden tests is a “burden genotype” instead of a standard genotype. Suppose
there are L potential LoF positions in a gene. An individual’s burden genotype for that gene is
then 1 if they have an LoF allele at any of those L positions. Let fℓ be the population frequency of
the LoF allele at position ℓ within the gene. Considering a haplotype chosen randomly from the
population, the probability that it does not contain an LoF allele is

P {no LoF at pos. 1, no LoF at pos. 2, . . . , no LoF at pos. L} ≈
L

∏
ℓ=1

(1 − fℓ),

where the approximation is reasonable because LoFs tend to be extremely rare [43] and rare vari-
ants tend to be essentially independent [82]. We then continue this line of approximation, by
noting that if LoFs are rare then any quadratic or higher order terms in the LoF frequencies at one
or more positions are negligible. As a result,

L

∏
ℓ=1

(1 − fℓ) ≈ 1 −
L

∑
ℓ=1

fℓ,
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and ∑L
ℓ=1 fℓ can be interpreted as the aggregate frequency of LoF variants. Assuming that this

aggregate frequency is also small, we can then assume that it is unlikely to observe an individual
with an LoF allele on both of their haplotypes. We can therefore approximate individual i’s burden
genotype for gene j, Gij, as the sum of two Bernoulli(∑L

ℓ=1 fℓ) random variables. The variance of
this sum is then

EGG2
ij ≈ 2

L

∑
ℓ=1

fℓ

(
1 −

L

∑
ℓ=1

fℓ

)
≈ 2

L

∑
ℓ=1

fℓ.

Using this result in place of equation 4, and noting that we write γj for αj in the case of LoF burden
tests, results in

EG,εz2
j ≈ 1 + 2nγ2

j

L

∑
ℓ=1

fℓ

and

plim
n→∞

z2
j

n
≈ 2γ2

j

L

∑
ℓ=1

f j.

Finally, if we assume each of these L positions are under mutation selection balance with mu-
tation rates µ, then

Ez2
j ≈

2nγ2
j µL

shet
+ 1

giving our main result for burden tests,

Ez2
j ≈ 2nµL

γj

∑T
t=1 γ2

t,j

+ 1

= 2nµLΨG + 1,

where ΨG is the trait specificity of the gene as defined in the main text.

Relationship between z2, h2, and − log p-value

We end this section by noting that z2
j is closely related to both the heritability explained by that

variant, h2
j , as well as the the − log p-value returned by an association test. We will focus on GWAS

in this subsection for clarity, but the results also apply to LoF burden tests.

First, note that h2
j is defined (under our assumption of independent causal variants) as 2α2 f j(1−

f j) [32, equation (6.20)]. This is exactly the expected value (averaging over the environmental noise
and GWAS cohort composition) of z2

j − 1 as seen in equation 5. That is,

EG,εz2
j − 1 = h2

j ,

and so ranking variants based on z2
j is, in expectation, equivalent to ranking based on contribution

to heritability.

Next, note that under a null hypothesis where z has a standard Normal distribution (i.e., the
null used in GWAS),

P {z > t} = 1 − Φ(t) = Φ(−t),
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where Φ(t) is the standard Normal cumulative distribution function. This implies that for t ≥ 0,

P
{

z2 > t2} = Φ(−t).

This means that the reported p-value is related to z2 by

p = Φ
(
−
√

z2
)

,

which implies that

z2 =
(

Φ−1 (p)
)2

. (9)

For small p, Φ−1 is asymptotically [83]

Φ−1(p) ≈ −

√
log
(

1
p2

)
. (10)

Using the approximation in equation 10 in equation 9 we obtain that for small p-values, p is
related to z2 by

z2 ≈ −2 log p.

Therefore for large values of z2, it is essentially the same as twice the natural log p-value. In GWAS
it is standard to visualize and discuss − log10 p-values, but these are just a constant scaling times
the natural log p-values:

− log10 p = − log p
log (10)

≈ −2.30 log p ≈ 1.15z2.

Because of these results, we freely switch between discussing average z2 statistics, contribu-
tions to heritability, and − log p-values in the main text.
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B A model of context specificity to explain variant specificity

The main goal of this appendix is to build a model of how variants affect phenotypes that incor-
porates both the context dependence of variants and gene-level pleiotropy. Specifically, we want
to provide an analytical expression for variant specificity, ΨV , in terms of gene specificity, ΨG, and a
term that can be interpreted as “context specificity” under such a model.

Throughout, we will consider a biologically-inspired model of how a variant affects a trait. We
assume that a variant affects traits by changing the “activity” of a gene in one or more “contexts”,
and this gene affects traits by its activity in these “contexts”. We consider the “activity” of a gene
as the ability of the gene to perform its physiological task in a given context. Similarly, the notion
of “context” is completely abstract, but one could think of a context as being a specific cell type
or tissue or perhaps an even more specific condition, such as a certain cell type at certain point
of development when exposed to a certain stimulus. As such, we would say that a missense
variant that totally disrupts protein folding would have a large negative effect on activity across
all contexts, while a regulatory variant in a tissue-specific regulatory region may have a positive
or negative effect on activity by respectively increasing or decreasing the expression of the gene
in that context. Finally, we consider that traits have some impact on fitness, and thus affect the
frequency of the variant dependent on that variant’s effects on the gene in different contexts and
the effects of the gene on different traits in each context.

Our full model is summarized in Figure S20. We assume some number of contexts, C, and a
number of traits T. We denote the effect of a variant on the activity of the gene in context c as βc,
and the effect of the gene in context c on trait t as γct. That is, β is a property of the variant and γ

is a property of the gene. We then define the effect of the variant on trait t as αt = ∑C
c=1 βcγct. In

Appendix D, we show that under mild assumptions the strength of selection in heterozygotes is
equal to the sum of squared effects across all traits,

shet =
T

∑
t=1

(
C

∑
c=1

βcγct

)2

,

and hence under mutation selection balance, the relevant quantity for the average strength of
association under this model is the trait specificity of the variant,

ψV =

(
∑C

c=1 βcγc1

)2

∑T
t=1

(
∑C

c=1 βcγct

)2 , (11)

as we argued in Appendix A.

Analogously, we can consider the trait specificity of the gene, ΨG, which under our model is

ψG =

(
∑C

c=1 γc1

)2

∑T
t=1

(
∑C

c=1 γct

)2 . (12)

The crux of this document is defining a context specificity factor, FC, that captures how much
more specific a variant is than the gene through which it acts. We can implicitly define FC by

ψV = ψGFC.
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γ11
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Figure S20: The most general model we will consider. A variant has effects in different contexts,
and a gene determines how each context affects each trait.

That is,

FC =
ψV

ψG
=

(
∑C

c=1 βcγc1

)2
∑T

t=1

(
∑C

c=1 γct

)2

(
∑C

c=1 γc1

)2
∑T

t=1

(
∑C

c=1 βcγct

)2 . (13)

In this fully general model, the expression for FC is difficult to interpret. As such, we seek
a simpler model to gain some intuition. In contrast to the full model, we will now assume a
simpler model where contexts and traits have a one-to-one mapping. That is, each trait is affected
exclusively by a single context. We further assume that the gene either has no effect on a given
trait, or has an effect of γ, independent of the trait. Similarly, we assume that a variant either has
an effect on the activity of a gene in a context of β independent of the context, or has no effect on
that context. This model is summarized in Figure S21.

Under our toy model the equations for ψV , ψG, and FC simplify considerably. Let CV be the set
of contexts for which the variant has non-zero effects on the gene, and let CG be the set of contexts
in which the gene has non-zero effects on the corresponding traits. Assuming that the variant
affects the focal context and the gene has an effect in the focal context on the focal trait, we have

ψV =
1

|CV
⋂ CG|

.

In words, ψV is 1 over the number of contexts where both the variant and gene have an effect.
Similarly,

ψG =
1

|CG|
.
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β or 0

β or 0

β or 0

β or 0

γ or 0

γ or 0

γ or 0

γ or 0

Figure S21: The simplest model we will consider. There is a one-to-one correspondence between
contexts and traits. Variants either do or do not affect each context, and for a given gene each
context may or may not affect its corresponding trait.

Again, ψG is 1 over the number of contexts where the gene has an effect. Equivalently, ψG is 1 over
the number of traits that the gene affects.

Finally, we can compute the context specificity factor in this simple model:

FC =
|CG|

|CV
⋂ CG|

,

which has a particularly nice interpretation. The inverse, 1/FC, is the proportion of trait-relevant
contexts that are affected by the variant. That is, we do not care how many contexts the variant
affects, we only care how many contexts are affected where the gene is relevant to traits. In this
sense FC captures an intuitive measure of context-specificity where we measure context-specificity
weighted by how important each context is to any trait.

This simple model makes a number of strong assumptions. We can relax the assumption that
all of the effects of the variant on the contexts are either β or 0 and the assumption that the effects
of the gene in each context on the corresponding trait is either γ or 0. In particular, we will now
consider a model where there is still a one-to-one context-to-trait mapping, but the effect of the
variant on context c is βc and the effect of the gene in context c on trait c is γc (note that we only
need a single index on γ now because determining the context determines the trait and vice versa).
We show this model in Figure S22.
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Figure S22: A slight relaxation of the simplest model. There is still a one-to-one correspondence
between contexts and traits, but now variants can have arbitrary effects on contexts, and genes
can have arbitrary effects on the corresponding trait in each context.

Under this model, we then have

ψV =
β2

1γ2
1

∑C
c=1 β2

cγ2
c

, (14)

and

ψG =
γ2

1

∑C
c=1 γ2

c
. (15)

Substituting these into equation 13, we obtain

FC =
β2

1

∑C
c=1

(
γ2

c

∑C
c′=1 γ2

c′

)
β2

c

.

This equation is interpretable — it is the effect of the variant on the focal context relative to a
weighted average affect across all contexts where the weights for each context are proportional to
how much the gene affects a trait in each context.

In both simplified models, the context specificity factor tracks how much a variant affects the
context relevant for the focal trait relative to how much it affects all contexts (weighted by their
trait relevance). In either case, these models formalize the intuition that by only affecting a subset
of contexts, a variant can be substantially more trait specific than the gene through which it acts.
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B.1 Variants can be less trait specific than the genes through which they act

Our full model (Figure S20) can result in counterintuitive cases where a variant is less trait specific
than the gene through which it acts. Indeed, even the simplified model shown in Figure S22 can
result in cases where ψV < ψG. Since this simplified model is a sub-model of the full model,
it implies that such examples are feasible in the full model as well. As a numerical example,
assume there are two contexts and take β = (1/2, 2) and γ = (2, 1/2). Plugging these values into
Equations 14 and 15 we obtain

ψV =
1
2

ψG =
4

4 + 1
4

=
16
17

.

Here we see that the variant evenly affects both traits (and hence is quite non-specific) while the
gene very heavily favors the focal trait (and hence is quite specific).

An intuitive explanation for what has happened is that the variant has strong effects on rel-
atively unimportant contexts and weak effects on important contexts. These balance out, and so
suddenly contexts that were at very different scales of impact at the gene level become more sim-
ilar in impact at the variant level. For example, core genes for one trait may have weak effects on
other traits when expressed in the wrong context [11]. A variant that hardly effects the important
context, but massively perturbs an unimportant context might bring these effects more in line with
each other and hence be less specific than the gene.
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C The impact of stabilizing selection on allele frequency in the context
of trait specificity and genetic drift

In Appendix A, we derived our results under an assumption of mutation-selection balance, as-
suming that the strength of selection acting on a variant was proportional to the sum of its squared
effects across all traits, ∑t α2

t . In this Appendix, we extend these results to the case of mutation-
selection-drift balance, obtaining the results of Appendix A as a limiting case.

Before beginning, we note that under our model, the effective strength of selection against
heterozygotes is shet = ∑t α2

t , with the fitness in homozygotes being 1. Meanwhile, we defined the
trait specificity of the variant to be ΨV := α2

1/ ∑t α2
t = α2

1/shet, where we assume α1 is the effect
on the focal trait. As such, specifying two of shet, ΨV , or α2

1 determines the third. In particular,
shet = α2

1/ΨV .

As discussed in Appendix A, the expected strength of association in GWAS is closely related
to the heritability contributed by the variant,

h2 = 2α2
1 f (1 − f ).

To understand the typical contribution of a variant, we need to compute the expected value of
2 f (1 − f ), which depends on shet.

It has long been well-understood [38,61,63] that under our stabilizing selection setup, the evo-
lutionary dynamics of an allele are approximately equivalent to those of an underdominant model,
where individuals homozygous for either allele have fitness 1, but heterozygous individuals have
fitness 1 − shet. We note that under a model of stabilizing selection, heterozygous individuals are
not actually less fit than homozygotes on average — it is something of a mathematical coincidence
that the evolutionary dynamics under stabilizing selection are equivalent to such a model.

In an underdominant model, the allelic dynamics are described by the stochastic differential
equation (SDE)

d ft = [2Nshet ft(1 − ft)(2 ft − 1) + 2Nµ(1 − 2 ft)] dt +
√

ft(1 − ft)dWt

where N is the effective population size, ft is the frequency at time t, Wt is a Wiener process (Brow-
nian motion), and time is measured in units of 2N generations. The properties of the stationary
distribution of this SDE are well-understood [38,61,63]. In particular, it has been shown that under
the stationary distribution of this model,

E[2 f (1 − f )] =
4NµM

( 1
2 , 4Nµ + 3

2 , Nshet
)

2
(
4Nµ + 1

2

)
M
( 1

2 , 4Nµ + 1
2 , Nshet

) , (16)

where M(·, ·, ·) is the confluent hypergeometric function. In practice, this can be accurately com-
puted numerically for small to moderate values of Nshet using scipy.special.hyp1f1 [84] in
Python or BAS::hypergeometric1F1 [85] in R. For large values of Nshet we found these functions
to be numerically unstable. For large values of Nshet, we rely on the asymptotic approximation of
the confluent hypergeometric function [86, (13.7.1)],

M(a, b, z) ∼ Γ(b)
Γ(a)

(
ezza−b

)
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where Γ is Gamma function. After some algebra and noting that Γ(x + 1)/Γ(x) = x, this results
in

4NµM
( 1

2 , 4Nµ + 3
2 , Nshet

)
2
(
4Nµ + 1

2

)
M
( 1

2 , 4Nµ + 1
2 , Nshet

) ∼ 4Nµ

2
(
4Nµ + 1

2

) Γ(4Nµ + 3
2 )

Γ(4Nµ + 1
2 )
(Nshet)

−1 =
2µ

shet
,

exactly recovering the expectation of 2 f (1 − f ) under mutation-selection balance.

We can also consider the behavior for small values of shet, where [86, (13.2.2)]

M(a, b, z) = 1 + O(z).

In this case we obtain
E[2 f (1 − f )] =

4Nµ

2
(
4Nµ + 1

2

) (1 + O(Nshet)) ,

which indicates that the expected value of 2 f (1 − f ) is approximately independent of Nshet for
values of Nshet ≪ 1. This is consistent with population genetics intuition of these sites being
effectively neutral, and hence behaving approximately the same as neutral variants regardless of
the precise values of their selection coefficients.

We end with a discussion of the behavior of the expected value of h2 as a function of α2
1 and

ΨV . To emphasize this reliance of Eh2 on these quantities, we will write Eh2(α2
1, ΨV). Writing

Eπ(shet) for E[2 f (1 − f )] to emphasize that the expected value of the heterozygosity (π) depends
on shet, and recalling that shet = α2

1/ΨV , we have

Eh2(α2
1, ΨV) = α2

1Eπ

(
α2

1
ΨV

)
. (17)

Our above results show that for small α2
1/ΨV , regardless of ΨV ,

Eh2(α2
1, ΨV) ≈

4nµα2
1

2(4Nµ + 1
2 )

(for α2
1/ΨV ≪ 1),

and so expected heritability in this regime is driven essentially solely by the effect size. In contrast,
when α2

1/ΨV is large, our results imply

Eh2(α2
1, ΨV) ≈ 2µΨV , (for α2

1/ΨV ≫ 1),

implying that expected strength of association is determined only by ΨV . Note that we can be
in this regime either by being extremely non-specific (ΨV ≪ α2

1) or by having an extremely large
effect on the focal trait (α2

1 ≫ 1).

Finally, using a technical lemma, Lemma C.1, that we prove below, we can show that for any
µ > 0, π(shet) is a strictly decreasing function of shet. This result is extremely intuitive as it says
that as the effective strength of selection against heterozygotes increases, the expected heterozy-
gosity decreases. This in turn implies that for fixed α2

1, π(α2
1/Ψv) is a strictly increasing function

of ΨV . Finally, if we hold α2
1 fixed, we see that the only dependence on ΨV in equation 17 is via

π(α2
1/ΨV). This implies that for fixed α2

1, Eh2(α2
1, ΨV) is a strictly increasing function of ΨV .

While this result may seem technical, it has a simple interpretation: among all variants with
the same trait importance, GWAS will, on average, rank the most trait-specific variants the most
highly. Thus, while we focused on the role of trait-specificity in the mutation-selection balance
regime in the main text, trait-specificity plays a key role in association study power across the
entire range of effect sizes.
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C.1 Technical lemma

Lemma C.1. Suppose b ≥ a > 0. Then,

M(a, b + 1, z)
M(a, b, z)

is a strictly decreasing function of z on z > 0.

Proof. Our proof relies on a technical lemma [87, Lemma 2.1], that states that if all of the following
hold:

• f (x) and g(x) can be represented as series ∑∞
k=0 fkxk and ∑∞

k=0 gkxk respectively

• Both series converge on −R < x < R

• gk > 0 for all k

•
{

fk
gk

}∞

k=0
is a decreasing sequence

then f (x)/g(x) is a strictly decreasing function of x on the interval (0, R).

To use this lemma, we use the series representation [86, (13.2.2)],

M(a, b, z) =
∞

∑
k=0

(a)k

(b)kk!
zk,

where (c)k := c(c+ 1) · · · (c+ k− 1) is the Pochammer symbol, with the convention that (c)0 := 1.
It can be easily shown that this series is convergent for all z by noting that (a)k/(b)k ≤ 1 by
assumption that a ≤ b and comparing terms to the everywhere convergent series for exp z. Similar
considerations show that M(a, b + 1, z) is everywhere convergent.

We now write

fk =
(a)k

(b + 1)kk!
,

and

gk =
(a)k

(b)kk!

for the coefficients of zk in the series representations of M(a, b + 1, z) and M(a, b, z) respectively.
To use the lemma, we need to prove that all gk > 0 and that the ratios fk/gk are decreasing in k.
That gk > 0 for all k is trivial, as each gk is a ratio of positive integers. Now, note that

fk

gk
=

(b)k

(b + 1)k
=

b
b + k

,

which is strictly decreasing in k. Applying [87, Lemma 2.1] completes the proof.
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D Connection between effect sizes and fitness under stabilizing selec-
tion

In this Appendix, we discuss the assumptions under which we may assume that the effective
strength of selection acting against a variant, shet, is the sum of that variant’s trait importances,
∑t α2

t .

Our starting point is an arbitrary fitness function, w, which maps a vector of trait values, t, to
a fitness. That is, w(t) specifies the average fitness of an individual with trait values t. We need
some mild, technical assumptions on w — for our purposes it is sufficient that w have an isolated
local maximum, and that w be twice differentiable at that maximum. Without loss of generality,
we may assume that w(t) has a local maximum at t = 0 by redefining t as t − t∗ where t∗ is a local
optimum of w. We then assume that natural selection is strong enough so that most individuals
have traits that are close to the optimum. More precisely, we will assume that the trait values we
are interested in are close enough to zero so that terms smaller than ∥t∥2

2 are negligible. As such,
we may perform a multivariate Taylor expansion of our fitness function around 0:

w(t) = w(0) + ⟨∇w(s)|s=0, t⟩+ t⊤
(
∇2w(s)|s=0

)
t + o

(
∥t∥2

2
)

= w(0) + t⊤
(
∇2w(s)|s=0

)
t + o

(
∥t∥2

2
)

≈ w(0) + t⊤
(
∇2w(s)|s=0

)
t,

where the second line follows from the fact that 0 is an optimum so the gradient of w evaluated at
0 is 0.

Defining H := ∇2w(s)|s=0 as the Hessian (i.e., matrix of second derivatives) of w at 0, we
obtain that the fitness consequence of having a set of traits t is −t⊤Ht. Note that since we are at an
isolated local maximum, H must be negative definite, which just means that v⊤Hv < 0 for any v.

This is exactly the setting of [38] (under certain assumptions discussed below), so we obtain
that if a variant causes a change in phenotypes of α = (α1, . . . , αT) then that results in evolutionary
dynamics equivalent to underdominance with a selection coefficient proportional to

shet(α) ∝ −α⊤Hα. (18)

Recently [64], it has been shown that the assumption of independent sites used in [38] to derive
equation 18 is incompatible with the Bulmer Effect [62, 88] where variants tend to be in slightly
negative LD with other variants that affect the trait in the same direction even if the variants are
physically unlinked. Accounting for these subtleties can be well-approximated by changing the
constant of proportionality in equation 18, and does not affect our results here [64, equation (43)].

Here we make our first transformation — we absorb the constant of proportionality into α.
That is, we may scale all of the traits by some constant to make the above proportionality an
equality:

shet(α) = −α⊤Hα.

So far we have subtracted a constant from all of our traits and then scaled them by a constant. This
does not fundamentally change any of the traits we have measured.
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Now, expanding the right-hand side of equation 18 we obtain

α⊤Hα =
T

∑
i=1

T

∑
j=1

αiαjHij.

The cross terms make downstream analysis difficult. Furthermore, the constraint that H be nega-
tive definite implies nontrivial constraints on the values that the entries of H may take. To simplify
further analysis, we would like to get rid of these cross terms without changing our interpretation
of the focal trait (say the first dimension of t). The rest of this Appendix will be devoted to accom-
plishing that task.

Since H is negative definite, we may define an inner product by

⟨u, v⟩H := −u⊤Hv.

Note that this is different from the usual Euclidean inner product, but we may prove that it is
inner product by noting that

⟨u, v⟩H = −u⊤Hv = −
(

u⊤Hv
)⊤

= −v⊤H⊤u = −v⊤Hu = ⟨v, u⟩H

by the symmetry of the Hessian. This shows that our putative inner product is symmetric. Next,
note that for scalars a and b,

⟨au + bw, v⟩H = − (au + bw)T Hv = a
(
−u⊤Hv

)
+ b

(
−w⊤Hv

)
= a⟨u, v⟩H + b⟨w, v⟩H

which shows that our putative inner product is linear. Finally for v ̸= 0

⟨v, v⟩H = −v⊤Hv > 0

by the negative definiteness of H showing that our inner product is positive definite. These three
properties define an inner product, so ⟨·, ·⟩H is a bonafide inner product.

Now, since this is inner product, we may perform the Gram-Schmidt process with respect
to this inner product starting with the vector (1, 0, 0, . . .) which corresponds exactly to the focal
trait in the original coordinate system. The output of the Gram-Schmidt process is a new basis,
w1, . . . , wT such that

⟨wi, wj⟩H =

{
1 if i = j

0 if i ̸= j

and w1 ∝ (1, 0, 0, . . .). These new vectors describe how to change the coordinates of a vector
from the original coordinate system to a new coordinate system that is orthonormal with respect
to our inner product. In our case, we can think of coordinates as traits. The first coordinate re-
mains unchanged (up to a rescaling that is independent of the other coordinates) from the original
coordinate system to the new coordinate system, but the remaining coordinates will be linear
combinations of more than one coordinate. This means that in our new coordinate system, we still
have the focal trait, but then define new traits in terms of linear combinations of the original traits.
By orthonormality, we see that if we write α in this new coordinate system,

α⊤Hα = −
T

∑
t=1

α2
t ,
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and thus,

shet(α) =
T

∑
t=1

α2
t .

Ultimately, this means that we may define our traits such that the first dimension is a centered
and scaled version of the original first trait dimension (centered so its optimum is zero, scaled so
that a unit change of the trait holding all other transformed traits constant has a unit selection coeffi-
cient). The remaining dimensions get scrambled (including with the first original trait dimension),
meaning that they are each some linear combination of the original traits.

A subtle point here is that in this coordinate system, the non-focal traits may be in part deter-
mined by the focal trait, so we need to be careful in interpreting pleiotropy. For example if we had
traits that were weight and 1/height2, we could change the coordinate system to instead be weight
and BMI. When we talk about a variant that is specific to weight in this new coordinate system,
that variant must not affect BMI. But in the original coordinate system, the variant is necessarily
not specific to weight because to keep BMI fixed, it must affect both height and weight.

To derive our results, we relied on the argument presented in [38]. That argument requires
the trait to be sufficiently polygenic that the genetic component of an individual’s phenotype is
approximately Gaussian distributed. It also requires that a new mutation has a random effect, and
that that effect is isotropic in our final scaled and rotated trait space. That is, conditioned on its
total squared effect, the effect of a new mutation is equally likely to point in any direction of trait
space. There are also a number of additional assumptions that are generally met in practice for
most traits. Most of these assumptions are either met in practice or do not substantially affect the
interpretation of the results. See [38, Supplementary Note Sections 4 and 5].

To summarize, if we choose our coordinate system carefully (i.e., choose he correct set of traits
and how to measure them), then under fairly arbitrary models of stabilizing selection we may
obtain shet = ∑t α2

t . In practice we do not know the fitness function, and so we cannot determine
the proper rotation and scaling of trait space to obtain this result. As a result, in the main text,
we assume that the traits we consider are such that this result holds. This is obviously a gross
approximation, but seems to work surprisingly well in practice, for example in Figure 3C. It would
be an interesting line of future work to try to estimate H (or equivalently learn the proper rotation
and scaling of trait space).
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